DIGITAL LIBRARY ARCHIVE
HOME > DIGITAL LIBRARY ARCHIVE
< Previous   List   Next >  
Recommender System using Association Rule and Collaborative Filtering
Full-text Download
Ki-Hyun Lee (School of Computer Science and Engineering, Inha University)
Byung-Jin Ko (School of Computer Science and Engineering, Inha University)
Geun-Sik Jo (School of Computer Science and Engineering, Inha University)
Vol. 8, No. 2, Page: 91 ~ 103
Keywords
Recommender System, Association Rule, Collaborative Filterining
Abstract
A collaborative filtering which supports personalized services of users has been common use in existing web sites for increasing the satisfaction of users. A collaborative filtering is demanded that items are estimated more than specified number. Besides, it tends to ignore information of other users as recommending them on the basis of information of partial users who have similar inclination. However, there are valuable hidden information into other users' one. In this paper, we use Association Rule, which is common wide use in Data Mining, with collaborative filtering for the purpose of discovering those information. In addition, this paper proved that Association Rule applied to Recommender System has a effects to recommend users by the relation between groups. In other words, Association Rule based on the history of all users is derived from. and the efficiency of Recommender System is improved by using Association Rule with collaborative filtering.
Show/Hide Detailed Information in Korean
연관 규칙과 협력적 여과 방식을 이용한 추천 시스템
이기현 (인하대학교 컴퓨터공학과)
고병진 (인하대학교 컴퓨터공학과)
조근식 (인하대학교 컴퓨터공학과)
Abstract
기존의 인터넷 웹사이트에서는 사용자의 만족을 극대화시키기 위하여 사용자별로 개인화 된 서비스를 제공하는 협력적 필터링 방식을 적용하고 있다. 협력적 여과 기술은 비슷한 선호도를 가지는 사용자들과의 상관관계를 기반으로 취향에 맞는 아이템을 예측하여 특정 사용자에게 추천하여준다. 그러나 협력적 필터링은 추천을 받기 위해서 특정 수 이상의 아이템에 대한 평가를 요구하며, 또한 전체 사용자에 대해 단지 비슷한 선호도를 가지는 일부 사용자 정보에 의지하여 추천함으로써 나머지 사용자 정보를 무시하는 경향이 있다. 그러나 나머지 사용자 정보에도 추천을 위한 유용한 정보가 숨겨져 있다. 우리는 이러한 숨겨진 유용한 추천 정보를 발견하기 위하여 본 논문에서는 협력적 여과 방식과 함께 데이터 마이닝(Data Mining)에서 사용되는 연관 규칙(Association Rule)을 추천에 사용한다. 연관 규칙은 한 항목 그룹과 다른 항목 그룹 사이에 존재하는 연관성을 규칙(Rule)의 형태로 표현한 것이다. 이와 같이 생성된 연관 규칙은 개인 구매도 분석, 상품의 교차 매매(Cross-Marketing), 카탈로그 디자인, 염가 매출품(Loss Leader)분석, 상품 진열, 구매 성향에 따른 고객 분류 다양하게 사용되고 있다. 그러나 이런 연관 규칙은 추천 시스템에서 잘 응용되지 못하고 있는 실정이다. 본 논문에서 우리는 연관 규칙을 추천 시스템에 적용해, 항목그룹 사이에 연관성을 유도함으로써 추천에 효율적으로 사용할 수 있음을 보였다 즉 전체 사용자의 히스토리(History) 정보를 기반으로 아이템 사이의 연관 규칙을 유도하고 협력적 여과 방식과 함께 보조적으로 연관 규칙을 추천을 위해 사용함으로써 추천 시스템에 효율성을 높였다. 비트로 제한할 경우 7.3Mbps의 빠른 처리속도를 가질 수 있다
Cite this article
JIIS Style
Lee, K.-H., B.-J. Ko, and G.-S. Jo, "Recommender System using Association Rule and Collaborative Filtering", Journal of Intelligence and Information Systems, Vol. 8, No. 2 (2002), 91~103.

IEEE Style
Ki-Hyun Lee, Byung-Jin Ko, and Geun-Sik Jo, "Recommender System using Association Rule and Collaborative Filtering", Journal of Intelligence and Information Systems, vol. 8, no. 2, pp. 91~103, 2002.

ACM Style
Lee, K.-H., Ko, B.-J., and Jo, G.-S., 2002. Recommender System using Association Rule and Collaborative Filtering. Journal of Intelligence and Information Systems. 8, 2, 91--103.
Export Formats : BiBTeX, EndNote

Warning: include(/home/hosting_users/ev_jiisonline/www/admin/archive/advancedSearch.php) [function.include]: failed to open stream: No such file or directory in /home/hosting_users/ev_jiisonline/www/archive/detail.php on line 429

Warning: include() [function.include]: Failed opening '/home/hosting_users/ev_jiisonline/www/admin/archive/advancedSearch.php' for inclusion (include_path='.:/usr/local/php/lib/php') in /home/hosting_users/ev_jiisonline/www/archive/detail.php on line 429
@article{Lee:JIIS:2002:140,
author = {Lee, Ki-Hyun and Ko, Byung-Jin and Jo, Geun-Sik},
title = {Recommender System using Association Rule and Collaborative Filtering},
journal = {Journal of Intelligence and Information Systems},
issue_date = {December 2002},
volume = {8},
number = {2},
month = Dec,
year = {2002},
issn = {2288-4866},
pages = {91--103},
url = {},
doi = {},
publisher = {Korea Intelligent Information System Society},
address = {Seoul, Republic of Korea},
keywords = { Recommender System, Association Rule and Collaborative Filterining },
}
%0 Journal Article
%1 140
%A Ki-Hyun Lee
%A Byung-Jin Ko
%A Geun-Sik Jo
%T Recommender System using Association Rule and Collaborative Filtering
%J Journal of Intelligence and Information Systems
%@ 2288-4866
%V 8
%N 2
%P 91-103
%D 2002
%R
%I Korea Intelligent Information System Society