DIGITAL LIBRARY ARCHIVE
HOME > DIGITAL LIBRARY ARCHIVE
< Previous   List   Next >  
Applying Centrality Analysis to Solve the Cold-Start and Sparsity Problems in Collaborative Filtering
Full-text Download
Yoon-Ho Cho (College of Business Administration, Kookmin University)
Joung-Hae Bang (College of Business Administration, Kookmin University)
Vol. 17, No. 3, Page: 99 ~ 114
Keywords
Centrality Analysis, Cold-start Recommendation, Sparsity, Social Network Analysis, Collaborative Filtering
Abstract
Collaborative Filtering (CF) suffers from two major problems:sparsity and cold-start recommendation. This paper focuses on the cold-start problem for new customers with no purchase records and the sparsity problem for the customers with very few purchase records. For the purpose, we propose a method for the new customer recommendation by using a combined measure based on three well-used centrality measures to identify the customers who are most likely to become neighbors of the new customer. To alleviate the sparsity problem, we also propose a hybrid approach that applies our method to customers with very few purchase records and CF to the other customers with sufficient purchases. To evaluate the effectiveness of our method, we have conducted several experiments using a data set from a department store in Korea. The experiment results show that the combination of two measures makes better recommendations than not only a single measure but also the best-seller-based method and that the performance is improved when applying the hybrid approach.
Show/Hide Detailed Information in Korean
협업필터링의 신규고객추천 및 희박성 문제 해결을 위한 중심성분석의 활용
조윤호 (국민대학교 경영정보학부)
방정혜 (국민대학교 경영학부)
Keywords
중심성분석, 신규고객추천, 희박성, 사회연결망, 협업필터링
Abstract
본 연구에서는 협업필터링의 두 가지 근본적인 문제인 신규고객 추천(cold-start recommendation)과 희박성(sparsity) 문제를 해결하고자 한다. 먼저, 사회 네트워크 분석에서 가장 많이 활용 되고 있는 세 가지 중심성 지표인 연결중심성(degree centrality), 근접중심성(closeness centrality), 매개중심성(betweenness centrality)을 결합한 다양한 중심성 지표들을 만든 후 이를 기반으로 신규고객의 잠재 이웃고객을 찾고 그 이웃고객들의 구매정보를 이용하여 신규고객에게 상품을 추천하는 새로운 방법을 제시한다. 다음으로 희박성 문제를 해결하기 위하여, 구매정보가 충분한 고객에게는 협업필터링을, 그렇지 않은 고객에게는 협업필터링 대신 제시한 신규고객 추천방법을 적용하는 하이브리드 추천 방법을 제안한다. 제시한 추천 방법의 효과성을 평가하기 위하여 국내 유명 백화점 중의 하나인 H백화점의 구매 트랜잭션 데이터를 사용하여 실험하였다. 실험결과로부터 근접중심성과 매개중심성을 결합한 지표를 신규고객 추천 시에 사용할 경우 추천 성능이 가장 우수한 것으로 판명되었으며, 제안한 하이브리드 추천 방법이 기존의 협업필터링의 성능을 상당히 개선함으로써 희박성 문제를 해결할 수 있는 새로운 대안임이 입증되었다.
Cite this article
JIIS Style
Cho, Y.-H., and J.-H. Bang, "Applying Centrality Analysis to Solve the Cold-Start and Sparsity Problems in Collaborative Filtering ", Journal of Intelligence and Information Systems, Vol. 17, No. 3 (2011), 99~114.

IEEE Style
Yoon-Ho Cho, and Joung-Hae Bang, "Applying Centrality Analysis to Solve the Cold-Start and Sparsity Problems in Collaborative Filtering ", Journal of Intelligence and Information Systems, vol. 17, no. 3, pp. 99~114, 2011.

ACM Style
Cho, Y.-H., and Bang, J.-H., 2011. Applying Centrality Analysis to Solve the Cold-Start and Sparsity Problems in Collaborative Filtering . Journal of Intelligence and Information Systems. 17, 3, 99--114.
Export Formats : BiBTeX, EndNote
Advanced Search
Date Range

to
Search
@article{Cho:JIIS:2011:453,
author = {Cho, Yoon-Ho and Bang, Joung-Hae},
title = {Applying Centrality Analysis to Solve the Cold-Start and Sparsity Problems in Collaborative Filtering },
journal = {Journal of Intelligence and Information Systems},
issue_date = {September 2011},
volume = {17},
number = {3},
month = Sep,
year = {2011},
issn = {2288-4866},
pages = {99--114},
url = {},
doi = {},
publisher = {Korea Intelligent Information System Society},
address = {Seoul, Republic of Korea},
keywords = { Centrality Analysis, Cold-start Recommendation, Sparsity, Social Network Analysis and Collaborative Filtering },
}
%0 Journal Article
%1 453
%A Yoon-Ho Cho
%A Joung-Hae Bang
%T Applying Centrality Analysis to Solve the Cold-Start and Sparsity Problems in Collaborative Filtering
%J Journal of Intelligence and Information Systems
%@ 2288-4866
%V 17
%N 3
%P 99-114
%D 2011
%R
%I Korea Intelligent Information System Society