DIGITAL LIBRARY ARCHIVE
HOME > DIGITAL LIBRARY ARCHIVE
< Previous   List   Next >  
The Need for Paradigm Shift in Semantic Similarity and Semantic Relatedness : From Cognitive Semantics Perspective
Full-text Download
Youngseok Choi (College of Business Administration, Seoul National University)
Jinsoo Park (Graduate School of Business, Seoul National University)
Vol. 19, No. 1, Page: 111 ~ 123
10.13088/jiis.2013.19.1.111
Keywords
Semantic Relatedness, Semantic Similarity, Semantic Network
Abstract
Semantic similarity/relatedness measure between two concepts plays an important role in research on system integration and database integration. Moreover, current research on keyword recommendation or tag clustering strongly depends on this kind of semantic measure. For this reason, many researchers in various fields including computer science and computational linguistics have tried to improve methods to calculating semantic similarity/relatedness measure.
The study of similarity between concepts is meant to discover how a computational process can model the action of a human to determine the relationship between two concepts. Most research on calculating semantic similarity usually uses ready?made reference knowledge such as semantic network and dictionary to measure concept similarity. The topological method is used to calculate relatedness or similarity between concepts based on various forms of a semantic network including a hierarchical taxonomy. This approach assumes that the semantic network reflects the human knowledge well. The nodes in a network represent concepts, and ways to measure the conceptual similarity between two nodes are also regarded as ways to determine the conceptual similarity of two words (i.e., two nodes in a network). Topological method can be categorized as node?based or edge?based, which are also called the information content approach and the conceptual distance approach, respectively. The node?based approach is used to calculate similarity between concepts based on how much information the two concepts share in terms of a semantic network or taxonomy while edge?based approach estimates the distance between the nodes that correspond to the?concepts being compared. Both of two approaches have assumed that the semantic network is static. That means topological approach has not considered the change of semantic relation between concepts in semantic network.
However, as information communication technologies make advantage in sharing knowledge among people, semantic relation between concepts in semantic network may change. To explain the change in semantic relation, we adopt the cognitive semantics. The basic assumption of cognitive semantics is that humans judge the semantic relation based on their cognition and understanding of concepts. This cognition and understanding is called ‘World Knowledge.’ World knowledge can be categorized as personal knowledge and cultural knowledge. Personal knowledge means the knowledge from personal experience. Everyone can have different Personal knowledge of same concept. Cultural knowledge is the knowledge shared by people who are living in the same culture or using the same language. People in the same culture have common understanding of specific concepts. Cultural knowledge can be the starting point of discussion about the change of semantic relation. If the culture shared by people changes for some reasons, the human’s cultural knowledge may also change. Today’s society and culture are changing at a past face, and the change of cultural knowledge is not negligible issues in the research on semantic relationship between concepts.
In this paper, we propose the future directions of research on semantic similarity. In other words, we discuss that how the research on semantic similarity can reflect the change of semantic relation caused by the change of cultural knowledge. We suggest three direction of future research on semantic similarity. First, the research should include the versioning and update methodology for semantic network. Second, semantic network which is dynamically generated can be used for the calculation of semantic similarity between concepts. If the researcher can develop the methodology to extract the semantic network from given knowledge base in real time, this approach can solve many problems related to the change of semantic relation. Third, the statistical approach based on corpus analysis can be an alternative for the method using semantic network. We believe that these proposed research direction can be the milestone of the research on semantic relation.
Show/Hide Detailed Information in Korean
의미간의 유사도 연구의 패러다임 변화의 필요성-인지 의미론적 관점에서의 고찰
최영석 (서울대학교 경영대학)
박진수 (서울대학교 경영전문대학원)
Abstract
개념간의 의미적 유사도 및 관계도(Semantic Similarity/Relatedness)를 구하는 연구는 고전적인 연구에서는 데이터 베이스 통합이나 시스템 통합, 그리고 현대의 연구에 있어서는 태그 및 키워드 추출, 연관 단어 추천 등에 걸쳐 다양한 분야에서 활용되어 온 연구이다. 그 연구는 역사가 오래되었을 뿐만 아니라, 경영정보와 컴퓨터 공학, 계산 언어학에 걸쳐 여러 분야에서도 많은 관심을 가져왔던 연구 분야라고 할 수 있다.
그러나, 지금까지의 개념간의 관계도 계산 방식은 미리 만들어진 사전이나 참조할 수 있는 다른 시맨틱 네트워크(Semantic Network)를 이용하여 계산하는 방법이 주를 이루었다. 이러한 접근 방법의 경우, 개념간의 의미적 관계가 변화에 대한 가능성을 고려하지 않는 것이 일반적이다. 하지만, 정보 기술의 발달과 빠른 사회변화는 개념간의 의미관계 등에 변화를 가져오고 있는 것이 현실이다. 사회적으로 일어나는 사건이나, 문화적 변화 등이 개념간의 의미관계를 변화시키는 것은 물론이며, 이러한 변화가 정보 통신 기술의 도움으로 빠르게 공유되고 있다. 이렇게 개념간의 의미 관계가 시간이나 맥락에 따라 빠르게 변화할 수 있는 가능성이 있음에도 불구하고, 기존의 개념간 의미적 유사도 및 관계도에 대한 연구들은 이러한 ‘의미관계의 변화’에 대한 새로운 문제에 대해 해답을 제시하지 못한 것이 사실이다.
따라서, 본 연구에서는 개념간의 유사도 연구에 있어 지금까지 있어왔던 ‘정적인 의미간 관계도 패러다임’에서 ‘동적인 의미간 관계도 패러다임’으로의 전환의 필요성과 그 당위성을 인지 의미론적(Cognitive Semantics)의 관점에서 역설하고자 한다. 인간이 인지하는 개념간의 의미관계가 변화할 수 있는 이론적 근거를 인지 의미론에서 찾아봄으로써, 패더다임 변화의 방향을 구체적으로 제시하였다. 또한 이러한 패러다임의 변화에 맞추어 개념간의 의미적 유사도 및 관계도에 대한 연구가 어떠한 방향으로 나아가야 할지 구체적인 연구 방향을 제시함으로써 관련 연구자들에게 새로운 연구의 가이드라인을 제시하였다.
Cite this article
JIIS Style
Choi, Y., and J. Park, "The Need for Paradigm Shift in Semantic Similarity and Semantic Relatedness : From Cognitive Semantics Perspective", Journal of Intelligence and Information Systems, Vol. 19, No. 1 (2013), 111~123.

IEEE Style
Youngseok Choi, and Jinsoo Park, "The Need for Paradigm Shift in Semantic Similarity and Semantic Relatedness : From Cognitive Semantics Perspective", Journal of Intelligence and Information Systems, vol. 19, no. 1, pp. 111~123, 2013.

ACM Style
Choi, Y., and Park, J., 2013. The Need for Paradigm Shift in Semantic Similarity and Semantic Relatedness : From Cognitive Semantics Perspective. Journal of Intelligence and Information Systems. 19, 1, 111--123.
Export Formats : BiBTeX, EndNote

Warning: include(/home/hosting_users/ev_jiisonline/www/admin/archive/advancedSearch.php) [function.include]: failed to open stream: No such file or directory in /home/hosting_users/ev_jiisonline/www/archive/detail.php on line 429

Warning: include() [function.include]: Failed opening '/home/hosting_users/ev_jiisonline/www/admin/archive/advancedSearch.php' for inclusion (include_path='.:/usr/local/php/lib/php') in /home/hosting_users/ev_jiisonline/www/archive/detail.php on line 429
@article{Choi:JIIS:2013:523,
author = {Choi, Youngseok and Park, Jinsoo},
title = {The Need for Paradigm Shift in Semantic Similarity and Semantic Relatedness : From Cognitive Semantics Perspective},
journal = {Journal of Intelligence and Information Systems},
issue_date = {March 2013},
volume = {19},
number = {1},
month = Mar,
year = {2013},
issn = {2288-4866},
pages = {111--123},
url = {http://dx.doi.org/10.13088/jiis.2013.19.1.111 },
doi = {10.13088/jiis.2013.19.1.111},
publisher = {Korea Intelligent Information System Society},
address = {Seoul, Republic of Korea},
keywords = { Semantic Relatedness, Semantic Similarity and Semantic Network },
}
%0 Journal Article
%1 523
%A Youngseok Choi
%A Jinsoo Park
%T The Need for Paradigm Shift in Semantic Similarity and Semantic Relatedness : From Cognitive Semantics Perspective
%J Journal of Intelligence and Information Systems
%@ 2288-4866
%V 19
%N 1
%P 111-123
%D 2013
%R 10.13088/jiis.2013.19.1.111
%I Korea Intelligent Information System Society