DIGITAL LIBRARY ARCHIVE
HOME > DIGITAL LIBRARY ARCHIVE
< Previous   List   Next >  
Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model
Full-text Download
Nam-ok Jo (School of Business, Ewha Womans University)
Hyun-jung Kim (School of Business, Ewha Womans University)
Kyung-shik Shin (School of Business, Ewha Womans University)
Vol. 21, No. 3, Page: 1 ~ 21
10.13088/jiis.2015.21.3.01
Keywords
Bankruptcy prediction, Bankruptcy type classification, Artificial neural network, Back-propagation neural network, Self-organizing map
Abstract
The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance.<br /> We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster.<br /> The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder’s equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. <br /> In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.
Show/Hide Detailed Information in Korean
하이브리드 인공신경망 모형을 이용한 부도 유형 예측
조남옥 (이화여자대학교 경영대학)
김현정 (이화여자대학교 경영대학)
신경식 (이화여자대학교 경영대학)
Keywords
부도 예측, 부도 유형 분류, 인공신경망, 역전파 인공신경망, 자기조직화지도
Abstract
부도 예측은 회계와 재무 분야에서 꾸준히 연구되고 있는 분야이다. 초기에는 주로 다중판별분석(multiple discriminant analysis)와 로짓 분석(logit analysis)과 같은 통계적 방법을 이용하였으나, 1990년대 이후에는 경영 분야의 분류 문제를 위해 많은 연구자들이 인공신경망(back-propagation neural network), 사계기반추론(case-based reasoning), 서포트 벡터 머신(support vector machine) 등과 같은 인공 지능을 통한 접근법을 이용하여 통계적 방법보다 분류 성과 측면에서 우수함을 입증해왔다. 기존의 기업의 부도에 관한 연구에서 많은 연구자들이 재무비율을 이용하여 부도 예측 모형을 구축하는 것에 초점을 맞추어왔다. 부도예측에 관한 연구가 꾸준히 진행되고 있는 반면, 부도의 세부적인 유형을 예측하여 제시하는 것에 대한 연구는 미흡한 실정이었다. 따라서 본 연구에서는 수익성, 안정성, 활동성 지표를 중심으로 국내 비외감 건설업 기업들의 부도 여부뿐만 아니라 부도의 세부적인 유형까지 예측 가능한 모형을 개발하고자 한다. 본 연구에서는 부도 유형을 예측하기 위해 두 개의 인공신경망 모형을 결합한 하이브리드 접근법을 제안하였다. 첫 번째 인공신경망 모형은 부도예측을 위한 역전파 인공신경망을 이용한 모형이며, 두 번째 인공신경망 모형은 부도 데이터를 몇 개의 유형으로 분류하는 자기조직화지도(self-organizing map)을 이용한 모형이다. 실험 결과를 통해 정의된 5개의 부도 유형인 심각한 부도(severe bankruptcy), 안정성 부족(lack of stability), 활동성 부족(lack of activity), 수익성 부족(lack of profitability), 회생 가능한 부도(recoverable bankruptcy)는 재무 비율에 따라 유형별로 상이한 특성을 갖는 것을 확인할 수 있었다. 본 연구 결과를 통해 신용 평가 분야의 연구자와 실무자들이 기업의 부도의 유형에 대한 유용한 정보를 얻을 것으로 기대한다.
Cite this article
JIIS(APA) Style
Jo, N.-o., Kim, H.-j., & Shin, K.-s. (2015). Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model. Journal of Intelligence and Information Systems, 21(3), 1-21.

IEEE Style
Nam-ok Jo, Hyun-jung Kim, and Kyung-shik Shin, "Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model", Journal of Intelligence and Information Systems, vol. 21, no. 3, pp. 1~21, 2015.

ACM Style
Jo, N.-o., Kim, H.-j., & Shin, K.-s., 2015. Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model. Journal of Intelligence and Information Systems. 21, 3, 1--21.
Export Formats : BiBTeX, EndNote
Advanced Search
Date Range

to
Search
@article{Jo:JIIS:2015:621,
author = {Jo, Nam-ok and Kim, Hyun-jung and Shin, Kyung-shik},
title = {Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model},
journal = {Journal of Intelligence and Information Systems},
issue_date = {September 2015},
volume = {21},
number = {3},
month = Sep,
year = {2015},
issn = {2288-4866},
pages = {1--21},
url = {http://dx.doi.org/10.13088/jiis.2015.21.3.01 },
doi = {10.13088/jiis.2015.21.3.01},
publisher = {Korea Intelligent Information System Society},
address = {Seoul, Republic of Korea},
keywords = { Bankruptcy prediction, Bankruptcy type classification, Artificial neural network, Back-propagation neural network and Self-organizing map },
}
%0 Journal Article
%1 621
%A Nam-ok Jo
%A Hyun-jung Kim
%A Kyung-shik Shin
%T Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model
%J Journal of Intelligence and Information Systems
%@ 2288-4866
%V 21
%N 3
%P 1-21
%D 2015
%R 10.13088/jiis.2015.21.3.01
%I Korea Intelligent Information System Society