DIGITAL LIBRARY ARCHIVE
HOME > DIGITAL LIBRARY ARCHIVE
< Previous   List   Next >  
An Expert System for the Estimation of the Growth Curve Parameters of New Markets
Full-text Download
Dongwon Lee (School of Business Administration, Hansung University)
Yeojin Jung (School of Business Administration, Kookmin University)
Jaekwon Jung (School of Business Administration, Kookmin University)
Dohyung Park (School of MIS, Kookmin University)
Vol. 21, No. 4, Page: 17 ~ 35
10.13088/jiis.2015.21.4.017
Keywords
market demand forecast, market growth curve, clustering data mining technique, content-based filtering, recommender system
Abstract
Demand forecasting is the activity of estimating the quantity of a product or service that consumers will purchase for a certain period of time. Developing precise forecasting models are considered important since corporates can make strategic decisions on new markets based on future demand estimated by the models. Many studies have developed market growth curve models, such as Bass, Logistic, Gompertz models, which estimate future demand when a market is in its early stage. Among the models, Bass model, which explains the demand from two types of adopters, innovators and imitators, has been widely used in forecasting.
Such models require sufficient demand observations to ensure qualified results. In the beginning of a new market, however, observations are not sufficient for the models to precisely estimate the market’s future demand. For this reason, as an alternative, demands guessed from those of most adjacent markets are often used as references in such cases. Reference markets can be those whose products are developed with the same categorical technologies. A market’s demand may be expected to have the similar pattern with that of a reference market in case the adoption pattern of a product in the market is determined mainly by the technology related to the product.
However, such processes may not always ensure pleasing results because the similarity between markets depends on intuition and/or experience. There are two major drawbacks that human experts cannot effectively handle in this approach. One is the abundance of candidate reference markets to consider, and the other is the difficulty in calculating the similarity between markets. First, there can be too many markets to consider in selecting reference markets. Mostly, markets in the same category in an industrial hierarchy can be reference markets because they are usually based on the similar technologies. However, markets can be classified into different categories even if they are based on the same generic technologies. Therefore, markets in other categories also need to be considered as potential candidates. Next, even domain experts cannot consistently calculate the similarity between markets with their own qualitative standards. The inconsistency implies missing adjacent reference markets, which may lead to the imprecise estimation of future demand. Even though there are no missing reference markets, the new market’s parameters can be hardly estimated from the reference markets without quantitative standards.
For this reason, this study proposes a case-based expert system that helps experts overcome the drawbacks in discovering referential markets. First, this study proposes the use of Euclidean distance measure to calculate the similarity between markets. Based on their similarities, markets are grouped into clusters. Then, missing markets with the characteristics of the cluster are searched for. Potential candidate reference markets are extracted and recommended to users. After the iteration of these steps, definite reference markets are determined according to the user’s selection among those candidates. Then, finally, the new market’s parameters are estimated from the reference markets. For this procedure, two techniques are used in the model. One is clustering data mining technique, and the other content-based filtering of recommender systems. The proposed system implemented with those techniques can determine the most adjacent markets based on whether a user accepts candidate markets.
Experiments were conducted to validate the usefulness of the system with five ICT experts involved. In the experiments, the experts were given the list of 16 ICT markets whose parameters to be estimated. For each of the markets, the experts estimated its parameters of growth curve models with intuition at first, and then with the system. The comparison of the experiments results show that the estimated parameters are closer when they use the system in comparison with the results when they guessed them without the system.
Show/Hide Detailed Information in Korean
신규시장 성장모형의 모수 추정을 위한 전문가 시스템
이동원 (한성대학교 경영학부)
정여진 (국민대학교 경영학부)
정재권 (국민대학교 경영학부)
박도형 (국민대학교 경영정보학부)
Keywords
시장수요예측, 시장성장모형, 군집 분석 데이터 마이닝 기법, 내용 기반 필터링, 추천 시스템
Abstract
시장 수요 예측은 일정 기간 동안 소비자에게 판매되는 동종 제품 또는 서비스의 수량 혹은 매출액의 규모를 추정하는 활동으로서, 기업경영활동에 있어 효율적인 의사결정을 내릴 수 있는 근거로 활용된다는 점에서 중요하게 인식되고 있다. 신규 시장의 수요를 예측하기 위해 다양한 시장성장모형이 개발되어 왔다. 이런 모형들은 일반적으로 시장의 크기 변화의 동인을 신기술 확산으로 보고 소비자인 개인에게 기술이 확산되는 과정을 통해 시장 크기가 변하는 과정을 확산모형으로 구현하게 된다. 그러나, 시장이 형성된 직후에는 수요 관측치의 부족으로 인해 혁신계수, 모방계수와 같은 예측모형의 모수를 정확하게 추정하는 것이 쉽지 않다. 이런 경우, 전문가의 판단 하에 예측하고자 하는 시장과 유사한 시장을 결정하고 이를 참고하여 모수를 추정하게 되는데, 어떤 시장을 유사하다고 판단하느냐에 따라 성장모형은 크게 달라지게 되므로, 정확한 예측을 위해서는 유사 시장을 찾는 것은 매우 중요하다. 그러나, 이런 방식은 직관과 경험이라는 정성적 판단에 크게 의존함으로써 일관성이 떨어질 수밖에 없으며, 결국, 만족할 만한 수준의 결과를 얻기 힘들다는 단점을 지닌다. 이런 정성적 방법은 유사도가 더 높은 시장을 누락시키고 유사도가 낮은 시장을 선택하는 오류를 일으킬 수 있다. 이런 이유로, 본 연구는 신규 시장의 모수를 추정하기 위해 필요한 유사시장을 누락 없이 효과적으로 찾아낼 수 있는 사례기반 전문가 시스템을 설계하고자 수행되었다. 제안된 모형은 데이터 마이닝의 군집분석 기법과 추천 시스템의 내용 기반 필터링 방법론을 기반으로 전문가 시스템으로 구현되었다. 본 연구에서 개발된 시스템의 유용성을 확인하고자 정보통신분야 시장의 모수를 추정하는 실험을 실시하였다. 전문가를 대상으로 실시된 실험에서, 시스템을 사용한 모수의 추정치가 시스템을 사용하지 않았을 때와 비교하여 실제 모수와 더 가까움을 보임으로써 시스템의 유용성을 증명하였다.
Cite this article
JIIS Style
Lee, D., Y. Jung, J. Jung, and D. Park, "An Expert System for the Estimation of the Growth Curve Parameters of New Markets", Journal of Intelligence and Information Systems, Vol. 21, No. 4 (2015), 17~35.

IEEE Style
Dongwon Lee, Yeojin Jung, Jaekwon Jung, and Dohyung Park, "An Expert System for the Estimation of the Growth Curve Parameters of New Markets", Journal of Intelligence and Information Systems, vol. 21, no. 4, pp. 17~35, 2015.

ACM Style
Lee, D., Jung, Y., Jung, J., and Park, D., 2015. An Expert System for the Estimation of the Growth Curve Parameters of New Markets. Journal of Intelligence and Information Systems. 21, 4, 17--35.
Export Formats : BiBTeX, EndNote

Warning: include(/home/hosting_users/ev_jiisonline/www/admin/archive/advancedSearch.php) [function.include]: failed to open stream: No such file or directory in /home/hosting_users/ev_jiisonline/www/archive/detail.php on line 429

Warning: include() [function.include]: Failed opening '/home/hosting_users/ev_jiisonline/www/admin/archive/advancedSearch.php' for inclusion (include_path='.:/usr/local/php/lib/php') in /home/hosting_users/ev_jiisonline/www/archive/detail.php on line 429
@article{Lee:JIIS:2015:629,
author = {Lee, Dongwon and Jung, Yeojin and Jung, Jaekwon and Park, Dohyung},
title = {An Expert System for the Estimation of the Growth Curve Parameters of New Markets},
journal = {Journal of Intelligence and Information Systems},
issue_date = {December 2015},
volume = {21},
number = {4},
month = Dec,
year = {2015},
issn = {2288-4866},
pages = {17--35},
url = {http://dx.doi.org/10.13088/jiis.2015.21.4.017 },
doi = {10.13088/jiis.2015.21.4.017},
publisher = {Korea Intelligent Information System Society},
address = {Seoul, Republic of Korea},
keywords = { market demand forecast, market growth curve, clustering data mining technique, content-based filtering and recommender system },
}
%0 Journal Article
%1 629
%A Dongwon Lee
%A Yeojin Jung
%A Jaekwon Jung
%A Dohyung Park
%T An Expert System for the Estimation of the Growth Curve Parameters of New Markets
%J Journal of Intelligence and Information Systems
%@ 2288-4866
%V 21
%N 4
%P 17-35
%D 2015
%R 10.13088/jiis.2015.21.4.017
%I Korea Intelligent Information System Society