DIGITAL LIBRARY ARCHIVE
HOME > DIGITAL LIBRARY ARCHIVE
< Previous   List   Next >  
Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news
Full-text Download
Ji Seon Jeong (Dept. of Business Administration, Graduate School, Hanyang University)
Dong Sung Kim (Dept. of Business Administration, Graduate School, Hanyang University)
Jong Woo Kim (School of Business, Hanyang University)
Vol. 21, No. 4, Page: 37 ~ 51
10.13088/jiis.2015.21.4.037
Keywords
Stock Prediction, Sentiment Analysis, Predictive Analytics
Abstract
Due to the development of internet technology and the rapid increase of internet data, various studies are actively conducted on how to use and analyze internet data for various purposes. In particular, in recent years, a number of studies have been performed on the applications of text mining techniques in order to overcome the limitations of the current application of structured data. Especially, there are various studies on sentimental analysis to score opinions based on the distribution of polarity such as positivity or negativity of vocabularies or sentences of the texts in documents. As a part of such studies, this study tries to predict ups and downs of stock prices of companies by performing sentimental analysis on news contexts of the particular companies in the Internet. A variety of news on companies is produced online by different economic agents, and it is diffused quickly and accessed easily in the Internet. So, based on inefficient market hypothesis, we can expect that news information of an individual company can be used to predict the fluctuations of stock prices of the company if we apply proper data analysis techniques. However, as the areas of corporate management activity are different, an analysis considering characteristics of each company is required in the analysis of text data based on machine-learning. In addition, since the news including positive or negative information on certain companies have various impacts on other companies or industry fields, an analysis for the prediction of the stock price of each company is necessary. Therefore, this study attempted to predict changes in the stock prices of the individual companies that applied a sentimental analysis of the online news data. Accordingly, this study chose top company in KOSPI 200 as the subjects of the analysis, and collected and analyzed online news data by each company produced for two years on a representative domestic search portal service, Naver. In addition, considering the differences in the meanings of vocabularies for each of the certain economic subjects, it aims to improve performance by building up a lexicon for each individual company and applying that to an analysis. As a result of the analysis, the accuracy of the prediction by each company are different, and the prediction accurate rate turned out to be 56% on average. Comparing the accuracy of the prediction of stock prices on industry sectors, ‘energy/chemical’, ‘consumer goods for living’ and ‘consumer discretionary’ showed a relatively higher accuracy of the prediction of stock prices than other industries, while it was found that the sectors such as ‘information technology’ and ‘shipbuilding/transportation’ industry had lower accuracy of prediction. The number of the representative companies in each industry collected was five each, so it is somewhat difficult to generalize, but it could be confirmed that there was a difference in the accuracy of the prediction of stock prices depending on industry sectors. In addition, at the individual company level, the companies such as ‘Kangwon Land’, ‘KT & G’ and ‘SK Innovation’ showed a relatively higher prediction accuracy as compared to other companies, while it showed that the companies such as ‘Young Poong’, ‘LG’, ‘Samsung Life Insurance’, and ‘Doosan’ had a low prediction accuracy of less than 50%. In this paper, we performed an analysis of the share price performance relative to the prediction of individual companies through the vocabulary of pre-built company to take advantage of the online news information. In this paper, we aim to improve performance of the stock prices prediction, applying online news information, through the stock price prediction of individual companies. Based on this, in the future, it will be possible to find ways to increase the stock price prediction accuracy by complementing the problem of unnecessary words that are added to the sentiment dictionary.
Show/Hide Detailed Information in Korean
온라인 언급이 기업 성과에 미치는 영향 분석 : 뉴스 감성분석을 통한 기업별 주가 예측
정지선 (한양대학교 일반대학원 경영학과)
김동성 (한양대학교 일반대학원 경영학과)
김종우 (한양대학교 일반대학원 경영학부)
Keywords
주가 예측, 감성분석, 예측 분석
Abstract
인터넷 기술의 발전과 인터넷 상 데이터의 급속한 증가로 인해 데이터의 활용 목적에 적합한 분석방안 연구들이 활발히 진행되고 있다. 최근에는 텍스트 마이닝 기법의 활용에 대한 연구들이 이루어지고 있으며, 특히 문서 내 텍스트를 기반으로 문장이나 어휘의 긍정, 부정과 같은 극성 분포에 따라 의견을 스코어링(scoring)하는 감성분석과 관련된 연구들도 다수 이루어지고 있다. 이러한 연구의 연장선상에서, 본 연구는 인터넷 상의 특정 기업에 대한 뉴스 데이터를 수집하여 이들의 감성분석을 실시함으로써 주가의 등락에 대한 예측을 시도하였다. 개별 기업의 뉴스 정보는 해당 기업의 주가에 영향을 미치는 요인으로, 적절한 데이터 분석을 통해 주가 변동 예측에 유용하게 활용될 수 있을 것으로 기대된다. 따라서 본 연구에서는 개별 기업의 온라인 뉴스 데이터에 대한 감성분석을 바탕으로 개별 기업의 주가 변화 예측을 꾀하였다. 이를 위해, KOSPI200의 상위 종목들을 분석 대상으로 선정하여 국내 대표적 검색 포털 서비스인 네이버에서 약 2년간 발생된 개별 기업의 뉴스 데이터를 수집·분석하였다. 기업별 경영 활동 영역에 따라 기업 온라인 뉴스에 나타나는 어휘의 상이함을 고려하여 각 개별 기업의 어휘사전을 구축하여 분석에 활용함으로써 감성분석의 성능 향상을 도모하였다. 분석결과, 기업별 일간 주가 등락여부에 대한 예측 정확도는 상이했으며 평균적으로 약 56%의 예측률을 보였다. 산업 구분에 따른 주가 예측 정확도를 통하여 ‘에너지/화학’, ‘생활소비재’, ‘경기소비재’의 산업군이 상대적으로 높은 주가 예측 정확도를 보임을 확인하였으며, ‘정보기술’과 ‘조선/운송’ 산업군은 주가 예측 정확도가 낮은 것으로 확인되었다. 본 논문은 온라인 뉴스 정보를 활용한 기업의 어휘사전 구축을 통해 개별 기업의 주가 등락 예측에 대한 분석을 수행하였으며, 향후 감성사전 구축 시 불필요한 어휘가 추가되는 문제점을 보완한 연구 수행을 통하여 주가 예측 정확도를 높이는 방안을 모색할 수 있을 것이다.
Cite this article
JIIS Style
Jeong, J. S., D. S. Kim, and J. W. Kim, "Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news", Journal of Intelligence and Information Systems, Vol. 21, No. 4 (2015), 37~51.

IEEE Style
Ji Seon Jeong, Dong Sung Kim, and Jong Woo Kim, "Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news", Journal of Intelligence and Information Systems, vol. 21, no. 4, pp. 37~51, 2015.

ACM Style
Jeong, J. S., Kim, D. S., and Kim, J. W., 2015. Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news. Journal of Intelligence and Information Systems. 21, 4, 37--51.
Export Formats : BiBTeX, EndNote

Warning: include(/home/hosting_users/ev_jiisonline/www/admin/archive/advancedSearch.php) [function.include]: failed to open stream: No such file or directory in /home/hosting_users/ev_jiisonline/www/archive/detail.php on line 429

Warning: include() [function.include]: Failed opening '/home/hosting_users/ev_jiisonline/www/admin/archive/advancedSearch.php' for inclusion (include_path='.:/usr/local/php/lib/php') in /home/hosting_users/ev_jiisonline/www/archive/detail.php on line 429
@article{Jeong:JIIS:2015:630,
author = {Jeong, Ji Seon and Kim, Dong Sung and Kim, Jong Woo},
title = {Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news},
journal = {Journal of Intelligence and Information Systems},
issue_date = {December 2015},
volume = {21},
number = {4},
month = Dec,
year = {2015},
issn = {2288-4866},
pages = {37--51},
url = {http://dx.doi.org/10.13088/jiis.2015.21.4.037 },
doi = {10.13088/jiis.2015.21.4.037},
publisher = {Korea Intelligent Information System Society},
address = {Seoul, Republic of Korea},
keywords = { Stock Prediction, Sentiment Analysis and Predictive Analytics },
}
%0 Journal Article
%1 630
%A Ji Seon Jeong
%A Dong Sung Kim
%A Jong Woo Kim
%T Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news
%J Journal of Intelligence and Information Systems
%@ 2288-4866
%V 21
%N 4
%P 37-51
%D 2015
%R 10.13088/jiis.2015.21.4.037
%I Korea Intelligent Information System Society