DIGITAL LIBRARY ARCHIVE
HOME > DIGITAL LIBRARY ARCHIVE
< Previous   List   Next >  
The Pattern Analysis of Financial Distress for Non-audited Firms using Data Mining
Full-text Download
Su Hyun Lee (Hansung University)
Jung Min Park (KAIST of Business, Korea Advanced Institute Science and Technology)
Hyoung Yong Lee (Hansung University)
Vol. 21, No. 4, Page: 111 ~ 131
10.13088/jiis.2015.21.4.111
Keywords
Financial Distress, Non-audited Firm, Self-organizing Map, Distress Type, Financial Ratio
Abstract
There are only a handful number of research conducted on pattern analysis of corporate distress as compared with research for bankruptcy prediction. The few that exists mainly focus on audited firms because financial data collection is easier for these firms. But in reality, corporate financial distress is a far more common and critical phenomenon for non-audited firms which are mainly comprised of small and medium sized firms. The purpose of this paper is to classify non-audited firms under distress according to their financial ratio using data mining; Self-Organizing Map (SOM). SOM is a type of artificial neural network that is trained using unsupervised learning to produce a lower dimensional discretized representation of the input space of the training samples, called a map. SOM is different from other artificial neural networks as it applies competitive learning as opposed to error-correction learning such as backpropagation with gradient descent, and in the sense that it uses a neighborhood function to preserve the topological properties of the input space. It is one of the popular and successful clustering algorithm. In this study, we classify types of financial distress firms, specially, non-audited firms.
In the empirical test, we collect 10 financial ratios of 100 non-audited firms under distress in 2004 for the previous two years (2002 and 2003). Using these financial ratios and the SOM algorithm, five distinct patterns were distinguished. In pattern 1, financial distress was very serious in almost all financial ratios. 12% of the firms are included in these patterns. In pattern 2, financial distress was weak in almost financial ratios. 14% of the firms are included in pattern 2. In pattern 3, growth ratio was the worst among all patterns. It is speculated that the firms of this pattern may be under distress due to severe competition in their industries. Approximately 30% of the firms fell into this group. In pattern 4, the growth ratio was higher than any other pattern but the cash ratio and profitability ratio were not at the level of the growth ratio. It is concluded that the firms of this pattern were under distress in pursuit of expanding their business. About 25% of the firms were in this pattern. Last, pattern 5 encompassed very solvent firms. Perhaps firms of this pattern were distressed due to a bad short-term strategic decision or due to problems with the enterpriser of the firms. Approximately 18% of the firms were under this pattern.
This study has the academic and empirical contribution. In the perspectives of the academic contribution, non-audited companies that tend to be easily bankrupt and have the unstructured or easily manipulated financial data are classified by the data mining technology (Self-Organizing Map) rather than big sized audited firms that have the well prepared and reliable financial data. In the perspectives of the empirical one, even though the financial data of the non-audited firms are conducted to analyze, it is useful for find out the first order symptom of financial distress, which makes us to forecast the prediction of bankruptcy of the firms and to manage the early warning and alert signal. These are the academic and empirical contribution of this study. The limitation of this research is to analyze only 100 corporates due to the difficulty of collecting the financial data of the non-audited firms, which make us to be hard to proceed to the analysis by the category or size difference. Also, non-financial qualitative data is crucial for the analysis of bankruptcy. Thus, the non-financial qualitative factor is taken into account for the next study. This study sheds some light on the non-audited small and medium sized firms’ distress prediction in the future.
Show/Hide Detailed Information in Korean
데이터마이닝 기법을 활용한 비외감기업의 부실화 유형 분석
이수현 (한성대학교)
박정민 (KAIST 경영대학)
이형용 (한성대학교)
Keywords
기업부실, 비외감기업, 자기조직화지도, 부실화유형, 재무비율
Abstract
본 연구에서는 데이터마이닝 기법의 일종인 자기조직화지도(Self-Organizing Map, SOM)를 이용하여 비외감기업의 부실화 유형을 구분하고자 한다. 자기조직화지도는 인공 신경망을 기초로 자율학습을 통해 입력된 값을 유사한 군집끼리 묶어내는 방법으로, 기존의 통계적 군집 분류 방법보다 성능이 뛰어나고, 고차원의 입력데이터를 저차원으로 시각화할 수 있다는 장점 때문에 다양한 분야에서 각광받고 있다. 본 연구에서는 기존 연구의 주요 분석대상이었던 외감기업에 비해 부실화 빈도는 높지만 데이터 수집의 어려움으로 인해 분석대상에서 다소 제외되었던 비외감기업의 부실화 유형에 대해 알아보고, 유형별 구체적인 사례도 소개하고자 한다.
재무자료수집이 가능한 100개의 비외감 부실기업에 대해 분석한 결과, 비외감기업의 부실화 유형은 다섯 가지로 구분되었다. 유형 1은 전체 집단의 약 12%를 차지하며, 수익성, 성장성 등 재무지표가 다른 유형에 비해 열등하였다. 유형 2는 전체 집단의 약 14%로, 유형 1보다는 덜 심각하지만 재무지표가 대체로 열등하였다. 유형 3은 성장성 지표가 열등한 그룹으로 기업간 경쟁이 극심한 가운데 지속적으로 성장하지 못하고 부실화된 경우로 약 30%의 기업이 포함되었다. 유형 4는 성장성은 탁월하나 부채경영 등 과감한 경영으로 인해 유동성 부족이나 현금부족 등의 이유로 부실화된 그룹으로 약 25%의 기업이 포함되었다. 유형 5는 거의 모든 재무지표가 우수한 건전기업으로, 단기적인 경영전략의 실수 또는 중소기업의 특성상 경영자의 개인적 사정으로 부실화 되었을 가능성이 큰 그룹으로 약 18%의 기업이 포함되었다. 본 연구 결과는 부실화 유형을 구분하는데 기존의 통계적 방법이 아닌 자기조직화지도를 이용하였다는 점에서 학문적 의의가 있고, 비외감기업의 재무지표만으로도 1차적인 부실화 징후를 발견할 수 있다는 점에서 실무적 의의가 있다고 할 수 있다.
Cite this article
JIIS Style
Lee, S. H., J. M. Park, and H. Y. Lee, "The Pattern Analysis of Financial Distress for Non-audited Firms using Data Mining", Journal of Intelligence and Information Systems, Vol. 21, No. 4 (2015), 111~131.

IEEE Style
Su Hyun Lee, Jung Min Park, and Hyoung Yong Lee, "The Pattern Analysis of Financial Distress for Non-audited Firms using Data Mining", Journal of Intelligence and Information Systems, vol. 21, no. 4, pp. 111~131, 2015.

ACM Style
Lee, S. H., Park, J. M., and Lee, H. Y., 2015. The Pattern Analysis of Financial Distress for Non-audited Firms using Data Mining. Journal of Intelligence and Information Systems. 21, 4, 111--131.
Export Formats : BiBTeX, EndNote

Warning: include(/home/hosting_users/ev_jiisonline/www/admin/archive/advancedSearch.php) [function.include]: failed to open stream: No such file or directory in /home/hosting_users/ev_jiisonline/www/archive/detail.php on line 429

Warning: include() [function.include]: Failed opening '/home/hosting_users/ev_jiisonline/www/admin/archive/advancedSearch.php' for inclusion (include_path='.:/usr/local/php/lib/php') in /home/hosting_users/ev_jiisonline/www/archive/detail.php on line 429
@article{Lee:JIIS:2015:634,
author = {Lee, Su Hyun and Park, Jung Min and Lee, Hyoung Yong},
title = {The Pattern Analysis of Financial Distress for Non-audited Firms using Data Mining},
journal = {Journal of Intelligence and Information Systems},
issue_date = {December 2015},
volume = {21},
number = {4},
month = Dec,
year = {2015},
issn = {2288-4866},
pages = {111--131},
url = {http://dx.doi.org/10.13088/jiis.2015.21.4.111 },
doi = {10.13088/jiis.2015.21.4.111},
publisher = {Korea Intelligent Information System Society},
address = {Seoul, Republic of Korea},
keywords = { Financial Distress, Non-audited Firm, Self-organizing Map, Distress Type and Financial Ratio },
}
%0 Journal Article
%1 634
%A Su Hyun Lee
%A Jung Min Park
%A Hyoung Yong Lee
%T The Pattern Analysis of Financial Distress for Non-audited Firms using Data Mining
%J Journal of Intelligence and Information Systems
%@ 2288-4866
%V 21
%N 4
%P 111-131
%D 2015
%R 10.13088/jiis.2015.21.4.111
%I Korea Intelligent Information System Society