< Previous   List   Next >  
Improving the Accuracy of Document Classification by Learning Heterogeneity
Full-text Download
Xiu Shun Wong William (Kookmin University)
Yoonjin Hyun (Kookmin University)
Namgyu Kim (Kookmin University)
Vol. 24, No. 3, Page: 21 ~ 44
Text Mining, Text Classification, Heterogeneity Learning, Semi-Supervised Learning, Ensemble Learning
In recent years, the rapid development of internet technology and the popularization of smart devices have resulted in massive amounts of text data. Those text data were produced and distributed through various media platforms such as World Wide Web, Internet news feeds, microblog, and social media.
However, this enormous amount of easily obtained information is lack of organization. Therefore, this problem has raised the interest of many researchers in order to manage this huge amount of information.
Further, this problem also required professionals that are capable of classifying relevant information and hence text classification is introduced. Text classification is a challenging task in modern data analysis, which it needs to assign a text document into one or more predefined categories or classes. In text classification field, there are different kinds of techniques available such as K-Nearest Neighbor, Naïve Bayes Algorithm, Support Vector Machine, Decision Tree, and Artificial Neural Network.
However, while dealing with huge amount of text data, model performance and accuracy becomes a challenge. According to the type of words used in the corpus and type of features created for classification, the performance of a text classification model can be varied. Most of the attempts are been made based on proposing a new algorithm or modifying an existing algorithm. This kind of research can be said already reached their certain limitations for further improvements. In this study, aside from proposing a new algorithm or modifying the algorithm, we focus on searching a way to modify the use of data. It is widely known that classifier performance is influenced by the quality of training data upon which this classifier is built. The real world datasets in most of the time contain noise, or in other words noisy data, these can actually affect the decision made by the classifiers built from these data. In this study, we consider that the data from different domains, which is heterogeneous data might have the characteristics of noise which can be utilized in the classification process.
In order to build the classifier, machine learning algorithm is performed based on the assumption that the characteristics of training data and target data are the same or very similar to each other. However, in the case of unstructured data such as text, the features are determined according to the vocabularies included in the document. If the viewpoints of the learning data and target data are different, the features may be appearing different between these two data. In this study, we attempt to improve the classification accuracy by strengthening the robustness of the document classifier through artificially injecting the noise into the process of constructing the document classifier.
With data coming from various kind of sources, these data are likely formatted differently. These cause difficulties for traditional machine learning algorithms because they are not developed to recognize different type of data representation at one time and to put them together in same generalization. Therefore, in order to utilize heterogeneous data in the learning process of document classifier, we apply semi-supervised learning in our study. However, unlabeled data might have the possibility to degrade the performance of the document classifier. Therefore, we further proposed a method called Rule Selection-Based Ensemble Semi-Supervised Learning Algorithm (RSESLA) to select only the documents that contributing to the accuracy improvement of the classifier. RSESLA creates multiple views by manipulating the features using different types of classification models and different types of heterogeneous data. The most confident classification rules will be selected and applied for the final decision making. In this paper, three different types of real-world data sources were used, which are news, twitter and blogs.
Show/Hide Detailed Information in Korean
이질성 학습을 통한 문서 분류의 정확성 향상 기법
윌리엄 (국민대학교)
현윤진 (국민대학교)
김남규 (국민대학교)
텍스트 마이닝, 문서 분류, 이질성 학습, 준지도 학습, 앙상블 학습
최근 인터넷 기술의 발전과 함께 스마트 기기가 대중화됨에 따라 방대한 양의 텍스트 데이터가 쏟아져 나오고 있으며, 이러한 텍스트 데이터는 뉴스, 블로그, 소셜미디어 등 다양한 미디어 매체를 통해 생산 및 유통되고있다. 이처럼 손쉽게 방대한 양의 정보를 획득할 수 있게 됨에 따라 보다 효율적으로 문서를 관리하기 위한 문서 분류의 필요성이 급증하였다. 문서 분류는 텍스트 문서를 둘 이상의 카테고리 혹은 클래스로 정의하여 분류하는 것을 의미하며, K-근접 이웃(K-Nearest Neighbor), 나이브 베이지안 알고리즘(Naïve Bayes Algorithm), SVM(Support Vector Machine), 의사결정나무(Decision Tree), 인공신경망(Artificial Neural Network) 등 다양한 기술들이 문서 분류에 활용되고 있다. 특히, 문서 분류는 문맥에 사용된 단어 및 문서 분류를 위해 추출된 형질에따라 분류 모델의 성능이 달라질 뿐만 아니라, 문서 분류기 구축에 사용된 학습데이터의 질에 따라 문서 분류의성능이 크게 좌우된다. 하지만 현실세계에서 사용되는 대부분의 데이터는 많은 노이즈(Noise)를 포함하고 있으며, 이러한 데이터의 학습을 통해 생성된 분류 모형은 노이즈의 정도에 따라 정확도 측면의 성능이 영향을 받게된다. 이에 본 연구에서는 노이즈를 인위적으로 삽입하여 문서 분류기의 견고성을 강화하고 이를 통해 분류의정확도를 향상시킬 수 있는 방안을 제안하고자 한다. 즉, 분류의 대상이 되는 원 문서와 전혀 다른 특징을 갖는이질적인 데이터소스로부터 추출한 형질을 원 문서에 일종의 노이즈의 형태로 삽입하여 이질성 학습을 수행하고, 도출된 분류 규칙 중 문서 분류기의 정확도 향상에 기여하는 분류 규칙만을 추출하여 적용하는 방식의 규칙선별 기반의 앙상블 준지도학습을 제안함으로써 문서 분류의 성능을 향상시키고자 한다.
Cite this article
JIIS Style
William, X. S. W., Y. Hyun, and N. Kim, "Improving the Accuracy of Document Classification by Learning Heterogeneity", Journal of Intelligence and Information Systems, Vol. 24, No. 3 (2018), 21~44.

IEEE Style
Xiu Shun Wong William, Yoonjin Hyun, and Namgyu Kim, "Improving the Accuracy of Document Classification by Learning Heterogeneity", Journal of Intelligence and Information Systems, vol. 24, no. 3, pp. 21~44, 2018.

ACM Style
William, X. S. W., Hyun, Y., and Kim, N., 2018. Improving the Accuracy of Document Classification by Learning Heterogeneity. Journal of Intelligence and Information Systems. 24, 3, 21--44.
Export Formats : BiBTeX, EndNote

Warning: include(/home/hosting_users/ev_jiisonline/www/admin/archive/advancedSearch.php) [function.include]: failed to open stream: No such file or directory in /home/hosting_users/ev_jiisonline/www/archive/detail.php on line 429

Warning: include() [function.include]: Failed opening '/home/hosting_users/ev_jiisonline/www/admin/archive/advancedSearch.php' for inclusion (include_path='.:/usr/local/php/lib/php') in /home/hosting_users/ev_jiisonline/www/archive/detail.php on line 429
author = {William, Xiu Shun Wong and Hyun, Yoonjin and Kim, Namgyu},
title = {Improving the Accuracy of Document Classification by Learning Heterogeneity},
journal = {Journal of Intelligence and Information Systems},
issue_date = {September 2018},
volume = {24},
number = {3},
month = Sep,
year = {2018},
issn = {2288-4866},
pages = {21--44},
url = {},
doi = {},
publisher = {Korea Intelligent Information System Society},
address = {Seoul, Republic of Korea},
keywords = { Text Mining, Text Classification, Heterogeneity Learning, Semi-Supervised Learning and Ensemble Learning },
%0 Journal Article
%1 736
%A Xiu Shun Wong William
%A Yoonjin Hyun
%A Namgyu Kim
%T Improving the Accuracy of Document Classification by Learning Heterogeneity
%J Journal of Intelligence and Information Systems
%@ 2288-4866
%V 24
%N 3
%P 21-44
%D 2018
%I Korea Intelligent Information System Society