DIGITAL LIBRARY ARCHIVE
HOME > DIGITAL LIBRARY ARCHIVE
< Previous   List   Next >  
KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon
Full-text Download
Sang-Min Park (Kunsan National University)
Chul-Won Na (Kunsan National University)
Min-Seong Choi (Kunsan National University)
Da-Hee Lee (Kunsan National University)
Byung-Won On (Kunsan National University)
Vol. 24, No. 4, Page: 219 ~ 240
10.13088/jiis.2018.24.4.219
Keywords
Sentiment Lexicon, Sentiment Analysis, Deep Learning, Text Mining, Bi-LSTM
Abstract
Sentiment analysis, which is one of the text mining techniques, is a method for extracting subjective content embedded in text documents. Recently, the sentiment analysis methods have been widely used in many fields. As good examples, data-driven surveys are based on analyzing the subjectivity of text data posted by users and market researches are conducted by analyzing users’ review posts to quantify users’ reputation on a target product. The basic method of sentiment analysis is to use sentiment dictionary (or lexicon), a list of sentiment vocabularies with positive, neutral, or negative semantics. In general, the meaning of many sentiment words is likely to be different across domains. For example, a sentiment word, ‘sad’ indicates negative meaning in many fields but a movie.
In order to perform accurate sentiment analysis, we need to build the sentiment dictionary for a given domain. However, such a method of building the sentiment lexicon is time-consuming and various sentiment vocabularies are not included without the use of general-purpose sentiment lexicon. In order to address this problem, several studies have been carried out to construct the sentiment lexicon suitable for a specific domain based on ‘OPEN HANGUL’ and ‘SentiWordNet’, which are general-purpose sentiment lexicons. However, OPEN HANGUL is no longer being serviced and SentiWordNet does not work well because of language difference in the process of converting Korean word into English word. There are restrictions on the use of such general-purpose sentiment lexicons as seed data for building the sentiment lexicon for a specific domain.
In this article, we construct ‘KNU Korean Sentiment Lexicon (KNU-KSL)’, a new general-purpose Korean sentiment dictionary that is more advanced than existing general-purpose lexicons. The proposed dictionary, which is a list of domain-independent sentiment words such as ‘thank you’, ‘worthy’, and ‘impressed’, is built to quickly construct the sentiment dictionary for a target domain. Especially, it constructs sentiment vocabularies by analyzing the glosses contained in Standard Korean Language Dictionary (SKLD) by the following procedures: First, we propose a sentiment classification model based on Bidirectional Long Short-Term Memory (Bi-LSTM).
Second, the proposed deep learning model automatically classifies each of glosses to either positive or negative meaning.
Third, positive words and phrases are extracted from the glosses classified as positive meaning, while negative words and phrases are extracted from the glosses classified as negative meaning.
Our experimental results show that the average accuracy of the proposed sentiment classification model is up to 89.45%. In addition, the sentiment dictionary is more extended using various external sources including SentiWordNet, SenticNet, Emotional Verbs, and Sentiment Lexicon 0603. Furthermore, we add sentiment information about frequently used coined words and emoticons that are used mainly on the Web. The KNU-KSL contains a total of 14,843 sentiment vocabularies, each of which is one of 1-grams, 2-grams, phrases, and sentence patterns. Unlike existing sentiment dictionaries, it is composed of words that are not affected by particular domains.
The recent trend on sentiment analysis is to use deep learning technique without sentiment dictionaries. The importance of developing sentiment dictionaries is declined gradually. However, one of recent studies shows that the words in the sentiment dictionary can be used as features of deep learning models, resulting in the sentiment analysis performed with higher accuracy (Teng, Z., 2016). This result indicates that the sentiment dictionary is used not only for sentiment analysis but also as features of deep learning models for improving accuracy. The proposed dictionary can be used as a basic data for constructing the sentiment lexicon of a particular domain and as features of deep learning models. It is also useful to automatically and quickly build large training sets for deep learning models.
Show/Hide Detailed Information in Korean
Bi-LSTM 기반의 한국어 감성사전 구축 방안
박상민 (군산대학교)
나철원 (군산대학교)
최민성 (군산대학교)
이다희 (군산대학교)
온병원 (군산대학교)
Keywords
Sentiment Lexicon, Sentiment Analysis, Deep Learning, Text Mining, Bi-LSTM
Abstract
감성사전은 감성 어휘에 대한 사전으로 감성 분석(Sentiment Analysis)을 위한 기초 자료로 활용된다. 이와 같은 감성사전을 구성하는 감성 어휘는 특정 도메인에 따라 감성의 종류나 정도가 달라질 수 있다. 예를 들면, ‘슬프다’라는 감성 어휘는 일반적으로 부정의 의미를 나타내지만 영화 도메인에 적용되었을 경우 부정의 의미를나타내지 않는다. 그렇기 때문에 정확한 감성 분석을 수행하기 위해서는 특정 도메인에 알맞은 감성사전을 구축하는 것이 중요하다. 최근 특정 도메인에 알맞은 감성사전을 구축하기 위해 범용 감성 사전인 오픈한글, SentiWordNet 등을 활용한 연구가 진행되어 왔으나 오픈한글은 현재 서비스가 종료되어 활용이 불가능하며, SentiWordNet은 번역 간에 한국 감성 어휘들의 특징이 잘 반영되지 않는다는 문제점으로 인해 특정 도메인의감성사전 구축을 위한 기초 자료로써 제약이 존재한다. 이 논문에서는 기존의 범용 감성사전의 문제점을 해결하기 위해 한국어 기반의 새로운 범용 감성사전을 구축하고 이를 KNU 한국어 감성사전이라 명명한다. KNU 한국어 감성사전은 표준국어대사전의 뜻풀이의 감성을 Bi-LSTM을 활용하여 89.45%의 정확도로 분류하였으며긍정으로 분류된 뜻풀이에서는 긍정에 대한 감성 어휘를, 부정으로 분류된 뜻풀이에서는 부정에 대한 감성 어휘를 1-gram, 2-gram, 어구 그리고 문형 등 다양한 형태로 추출한다. 또한 다양한 외부 소스(SentiWordNet, SenticNet, 감정동사, 감성사전0603)를 활용하여 감성 어휘를 확장하였으며 온라인 텍스트 데이터에서 사용되는신조어, 이모티콘에 대한 감성 어휘도 포함하고 있다. 이 논문에서 구축한 KNU 한국어 감성사전은 특정 도메인에 영향을 받지 않는 14,843개의 감성 어휘로 구성되어 있으며 특정 도메인에 대한 감성사전을 효율적이고빠르게 구축하기 위한 기초 자료로 활용될 수 있다. 또한 딥러닝의 성능을 높이기 위한 입력 자질로써 활용될수 있으며, 기본적인 감성 분석의 수행이나 기계 학습을 위한 대량의 학습 데이터 세트를 빠르게 구축에 활용될수 있다.
Cite this article
JIIS Style
Park, S.-M., C.-W. Na, M.-S. Choi, D.-H. Lee, and B.-W. On, "KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon", Journal of Intelligence and Information Systems, Vol. 24, No. 4 (2018), 219~240.

IEEE Style
Sang-Min Park, Chul-Won Na, Min-Seong Choi, Da-Hee Lee, and Byung-Won On, "KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon", Journal of Intelligence and Information Systems, vol. 24, no. 4, pp. 219~240, 2018.

ACM Style
Park, S.-M., Na, C.-W., Choi, M.-S., Lee, D.-H., and On, B.-W., 2018. KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon. Journal of Intelligence and Information Systems. 24, 4, 219--240.
Export Formats : BiBTeX, EndNote

Warning: include(/home/hosting_users/ev_jiisonline/www/admin/archive/advancedSearch.php) [function.include]: failed to open stream: No such file or directory in /home/hosting_users/ev_jiisonline/www/archive/detail.php on line 429

Warning: include() [function.include]: Failed opening '/home/hosting_users/ev_jiisonline/www/admin/archive/advancedSearch.php' for inclusion (include_path='.:/usr/local/php/lib/php') in /home/hosting_users/ev_jiisonline/www/archive/detail.php on line 429
@article{Park:JIIS:2018:757,
author = {Park, Sang-Min and Na, Chul-Won and Choi, Min-Seong and Lee, Da-Hee and On, Byung-Won},
title = {KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon},
journal = {Journal of Intelligence and Information Systems},
issue_date = {December 2018},
volume = {24},
number = {4},
month = Dec,
year = {2018},
issn = {2288-4866},
pages = {219--240},
url = {http://dx.doi.org/10.13088/jiis.2018.24.4.219 },
doi = {10.13088/jiis.2018.24.4.219},
publisher = {Korea Intelligent Information System Society},
address = {Seoul, Republic of Korea},
keywords = { Sentiment Lexicon, Sentiment Analysis, Deep Learning, Text Mining and Bi-LSTM
},
}
%0 Journal Article
%1 757
%A Sang-Min Park
%A Chul-Won Na
%A Min-Seong Choi
%A Da-Hee Lee
%A Byung-Won On
%T KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon
%J Journal of Intelligence and Information Systems
%@ 2288-4866
%V 24
%N 4
%P 219-240
%D 2018
%R 10.13088/jiis.2018.24.4.219
%I Korea Intelligent Information System Society