DIGITAL LIBRARY ARCHIVE
HOME > DIGITAL LIBRARY ARCHIVE
< Previous   List   Next >  
A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm
Full-text Download
Ye Lim Jung (Div. of Information Analysis, Korea Institute of Science and Technology Information)
Ji Hui Kim (Div. of Information Analysis, Korea Institute of Science and Technology Information)
Hyoung Sun Yoo (Div. of Information Analysis, Korea Institute of Science and Technology Information)
Vol. 26, No. 1, Page: 1 ~ 21
10.13088/jiis.2020.26.1.001
Keywords
Word2Vec, machine learning, text mining, market size estimation, market analysis
Abstract
With the rapid development of artificial intelligence technology, various techniques have been developed to extract meaningful information from unstructured text data which constitutes a large portion of big data. Over the past decades, text mining technologies have been utilized in various industries for practical applications. In the field of business intelligence, it has been employed to discover new market and/or technology opportunities and support rational decision making of business participants.
The market information such as market size, market growth rate, and market share is essential for setting companies’ business strategies. There has been a continuous demand in various fields for specific product level-market information. However, the information has been generally provided at industry level or broad categories based on classification standards, making it difficult to obtain specific and proper information.
In this regard, we propose a new methodology that can estimate the market sizes of product groups at more detailed levels than that of previously offered. We applied Word2Vec algorithm, a neural network based semantic word embedding model, to enable automatic market size estimation from individual companies’ product information in a bottom-up manner. The overall process is as follows: First, the data related to product information is collected, refined, and restructured into suitable form for applying Word2Vec model. Next, the preprocessed data is embedded into vector space by Word2Vec and then the product groups are derived by extracting similar products names based on cosine similarity calculation.
Finally, the sales data on the extracted products is summated to estimate the market size of the product groups. As an experimental data, text data of product names from Statistics Korea's microdata (345,103 cases) were mapped in multidimensional vector space by Word2Vec training. We performed parameters optimization for training and then applied vector dimension of 300 and window size of 15 as optimized parameters for further experiments. We employed index words of Korean Standard Industry Classification (KSIC) as a product name dataset to more efficiently cluster product groups. The product names which are similar to KSIC indexes were extracted based on cosine similarity. The market size of extracted products as one product category was calculated from individual companies’ sales data. The market sizes of 11,654 specific product lines were automatically estimated by the proposed model. For the performance verification, the results were compared with actual market size of some items. The Pearson's correlation coefficient was 0.513.
Our approach has several advantages differing from the previous studies. First, text mining and machine learning techniques were applied for the first time on market size estimation, overcoming the limitations of traditional sampling based- or multiple assumption required-methods. In addition, the level of market category can be easily and efficiently adjusted according to the purpose of information use by changing cosine similarity threshold. Furthermore, it has a high potential of practical applications since it can resolve unmet needs for detailed market size information in public and private sectors. Specifically, it can be utilized in technology evaluation and technology commercialization support program conducted by governmental institutions, as well as business strategies consulting and market analysis report publishing by private firms.
The limitation of our study is that the presented model needs to be improved in terms of accuracy and reliability. The semantic-based word embedding module can be advanced by giving a proper order in the preprocessed dataset or by combining another algorithm such as Jaccard similarity with Word2Vec.
Also, the methods of product group clustering can be changed to other types of unsupervised machine learning algorithm. Our group is currently working on subsequent studies and we expect that it can further improve the performance of the conceptually proposed basic model in this study.
Show/Hide Detailed Information in Korean
Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구
정예림 (한국과학기술정보연구원)
김지희 (한국과학기술정보연구원)
유형선 (한국과학기술정보연구원)
Keywords
Word2Vec, 기계학습, 텍스트 마이닝, 시장규모 추정, 시장분석
Abstract
인공지능 기술의 급속한 발전과 함께 빅데이터의 상당 부분을 차지하는 비정형 텍스트 데이터로부터 의미있는 정보를 추출하기 위한 다양한 연구들이 활발히 진행되고 있다. 비즈니스 인텔리전스 분야에서도 새로운 시장기회를 발굴하거나 기술사업화 주체의 합리적 의사결정을 돕기 위한 많은 연구들이 이뤄져 왔다. 본 연구에서는 기업의 성공적인 사업 추진을 위해 핵심적인 정보 중의 하나인 시장규모 정보를 도출함에 있어 기존에 제공되던 범위보다 세부적인 수준의 제품군별 시장규모 추정이 가능하고 자동화된 방법론을 제안하고자 한다. 이를 위해 신경망 기반의 시멘틱 단어 임베딩 모델인 Word2Vec 알고리즘을 적용하여 개별 기업의 생산제품에 대한 텍스트 데이터를 벡터 공간으로 임베딩하고, 제품명 간 코사인 거리(유사도)를 계산함으로써 특정한 제품명과 유사한 제품들을 추출한 뒤, 이들의 매출액 정보를 연산하여 자동으로 해당 제품군의 시장규모를 산출하는알고리즘을 구현하였다. 실험 데이터로서 통계청의 경제총조사 마이크로데이터(약 34만 5천 건)를 이용하여 제품명 텍스트 데이터를 벡터화 하고, 한국표준산업분류 해설서의 산업분류 색인어를 기준으로 활용하여 코사인거리 기반으로 유사한 제품명을 추출하였다. 이후 개별 기업의 제품 데이터에 연결된 매출액 정보를 기초로 추출된 제품들의 매출액을 합산함으로써 11,654개의 상세한 제품군별 시장규모를 추정하였다. 성능 검증을 위해실제 집계된 통계청의 품목별 시장규모 수치와 비교한 결과 피어슨 상관계수가 0.513 수준으로 나타났다. 본 연구에서 제시한 모형은 의미 기반 임베딩 모델의 정확성 향상 및 제품군 추출 방식의 개선이 필요하나, 표본조사또는 다수의 가정을 기반으로 하는 전통적인 시장규모 추정 방법의 한계를 뛰어넘어 텍스트 마이닝 및 기계학습 기법을 최초로 적용하여 시장규모 추정 방식을 지능화하였다는 점, 시장규모 산출범위를 사용 목적에 따라쉽고 빠르게 조절할 수 있다는 점, 이를 통해 다양한 분야에서 수요가 높은 세부적인 제품군별 시장정보 도출이가능하여 실무적인 활용성이 높다는 점에서 의의가 있다.
Cite this article
JIIS Style
Jung, Y. L., J. H. Kim, and H. S. Yoo, "A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm", Journal of Intelligence and Information Systems, Vol. 26, No. 1 (2020), 1~21.

IEEE Style
Ye Lim Jung, Ji Hui Kim, and Hyoung Sun Yoo, "A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm", Journal of Intelligence and Information Systems, vol. 26, no. 1, pp. 1~21, 2020.

ACM Style
Jung, Y. L., Kim, J. H., and Yoo, H. S., 2020. A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm. Journal of Intelligence and Information Systems. 26, 1, 1--21.
Export Formats : BiBTeX, EndNote
Advanced Search
Date Range

to
Search
@article{Jung:JIIS:2020:799,
author = {Jung, Ye Lim and Kim, Ji Hui and Yoo, Hyoung Sun},
title = {A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm},
journal = {Journal of Intelligence and Information Systems},
issue_date = {March 2020},
volume = {26},
number = {1},
month = Mar,
year = {2020},
issn = {2288-4866},
pages = {1--21},
url = {http://dx.doi.org/10.13088/jiis.2020.26.1.001 },
doi = {10.13088/jiis.2020.26.1.001},
publisher = {Korea Intelligent Information System Society},
address = {Seoul, Republic of Korea},
keywords = { Word2Vec, machine learning, text mining, market size estimation and market analysis
},
}
%0 Journal Article
%1 799
%A Ye Lim Jung
%A Ji Hui Kim
%A Hyoung Sun Yoo
%T A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm
%J Journal of Intelligence and Information Systems
%@ 2288-4866
%V 26
%N 1
%P 1-21
%D 2020
%R 10.13088/jiis.2020.26.1.001
%I Korea Intelligent Information System Society