DIGITAL LIBRARY ARCHIVE
HOME > DIGITAL LIBRARY ARCHIVE
< Previous   List   Next >  
The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms
Full-text Download
Jeonghun Kim (Department of Management, Kyung Hee University)
Min Yong Kim (School of Management, Kyung Hee University)
Ohbyung Kwon (School of Management, Kyung Hee University)
Vol. 26, No. 1, Page: 23 ~ 45
10.13088/jiis.2020.26.1.023
Keywords
Multi Class, Classification Algorithm, Meta-Feature, HHI, Data Complexity
Abstract
Big data is creating in a wide variety of fields such as medical care, manufacturing, logistics, sales site, SNS, and the dataset characteristics are also diverse. In order to secure the competitiveness of companies, it is necessary to improve decision-making capacity using a classification algorithm. However, most of them do not have sufficient knowledge on what kind of classification algorithm is appropriate for a specific problem area. In other words, determining which classification algorithm is appropriate depending on the characteristics of the dataset was has been a task that required expertise and effort. This is because the relationship between the characteristics of datasets (called meta-features) and the performance of classification algorithms has not been fully understood. Moreover, there has been little research on meta-features reflecting the characteristics of multi-class. Therefore, the purpose of this study is to empirically analyze whether meta-features of multi-class datasets have a significant effect on the performance of classification algorithms. In this study, meta-features of multi-class datasets were identified into two factors, (the data structure and the data complexity,) and seven representative meta-features were selected. Among those, we included the Herfindahl-Hirschman Index (HHI), originally a market concentration measurement index, in the meta-features to replace IR(Imbalanced Ratio). Also, we developed a new index called Reverse ReLU Silhouette Score into the meta-feature set.
Among the UCI Machine Learning Repository data, six representative datasets (Balance Scale, PageBlocks, Car Evaluation, User Knowledge-Modeling, Wine Quality(red), Contraceptive Method Choice) were selected. The class of each dataset was classified by using the classification algorithms (KNN, Logistic Regression, Nave Bayes, Random Forest, and SVM) selected in the study. For each dataset, we applied 10-fold cross validation method. 10% to 100% oversampling method is applied for each fold and meta-features of the dataset is measured. The meta-features selected are HHI, Number of Classes, Number of Features, Entropy, Reverse ReLU Silhouette Score, Nonlinearity of Linear Classifier, Hub Score.
F1-score was selected as the dependent variable. As a result, the results of this study showed that the six meta-features including Reverse ReLU Silhouette Score and HHI proposed in this study have a significant effect on the classification performance. (1) The meta-features HHI proposed in this study was significant in the classification performance. (2) The number of variables has a significant effect on the classification performance, unlike the number of classes, but it has a positive effect. (3) The number of classes has a negative effect on the performance of classification. (4) Entropy has a significant effect on the performance of classification. (5) The Reverse ReLU Silhouette Score also significantly affects the classification performance at a significant level of 0.01. (6) The nonlinearity of linear classifiers has a significant negative effect on classification performance. In addition, the results of the analysis by the classification algorithms were also consistent. In the regression analysis by classification algorithm, Naïve Bayes algorithm does not have a significant effect on the number of variables unlike other classification algorithms. This study has two theoretical contributions: (1) two new meta-features (HHI, Reverse ReLU Silhouette score) was proved to be significant. (2) The effects of data characteristics on the performance of classification were investigated using meta-features. The practical contribution points (1) can be utilized in the development of classification algorithm recommendation system according to the characteristics of datasets. (2) Many data scientists are often testing by adjusting the parameters of the algorithm to find the optimal algorithm for the situation because the characteristics of the data are different. In this process, excessive waste of resources occurs due to hardware, cost, time, and manpower. This study is expected to be useful for machine learning, data mining researchers, practitioners, and machine learning-based system developers. The composition of this study consists of introduction, related research, research model, experiment, conclusion and discussion.
Show/Hide Detailed Information in Korean
다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 미치는 영향 연구
김정훈 (경희대학교)
김민용 (경희대학교)
권오병 (경희대학교)
Keywords
다중 클래스, 판별 알고리즘, 메타 특징, HHI, 데이터 복잡성
Abstract
기업의 경쟁력 확보를 위해 판별 알고리즘을 활용한 의사결정 역량제고가 필요하다. 하지만 대부분 특정 문제영역에는 적합한 판별 알고리즘이 어떤 것인지에 대한 지식은 많지 않아 대부분 시행착오 형식으로 최적 알고리즘을 탐색한다. 즉, 데이터셋의 특성에 따라 어떠한 분류알고리즘을 채택하는 것이 적합한지를 판단하는것은 전문성과 노력이 소요되는 과업이었다. 이는 메타특징(Meta-Feature)으로 불리는 데이터셋의 특성과 판별알고리즘 성능과의 연관성에 대한 연구가 아직 충분히 이루어지지 않았기 때문이며, 더구나 다중 클래스(Multi-Class)의 특성을 반영하는 메타특징에 대한 연구 또한 거의 이루어진 바 없다. 이에 본 연구의 목적은 다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 유의한 영향을 미치는지에 대한 실증 분석을 하는것이다. 이를 위해 본 연구에서는 다중 클래스 데이터셋의 메타특징을 데이터셋의 구조와 데이터셋의 복잡도라는 두 요인으로 분류하고, 그 안에서 총 7가지 대표 메타특징을 선택하였다. 또한, 본 연구에서는 기존 연구에서 사용하던 IR(Imbalanced Ratio) 대신 시장집중도 측정 지표인 허핀달-허쉬만 지수(Herfindahl–Hirschman Index, HHI)를 메타특징에 포함하였으며, 역ReLU 실루엣 점수(Reverse ReLU Silhouette Score)도 새롭게 제안하였다. UCI Machine Learning Repository에서 제공하는 복수의 벤치마크 데이터셋으로 다양한 변환 데이터셋을생성한 후에 대표적인 여러 판별 알고리즘에 적용하여 성능 비교 및 가설 검증을 수행하였다. 그 결과 대부분의메타특징과 판별 성능 사이의 유의한 관련성이 확인되었으며, 일부 예외적인 부분에 대한 고찰을 하였다. 본 연구의 실험 결과는 향후 메타특징에 따른 분류알고리즘 추천 시스템에 활용할 것이다.
Cite this article
JIIS Style
Kim, J., M. Y. Kim, and O. Kwon, "The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms", Journal of Intelligence and Information Systems, Vol. 26, No. 1 (2020), 23~45.

IEEE Style
Jeonghun Kim, Min Yong Kim, and Ohbyung Kwon, "The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms", Journal of Intelligence and Information Systems, vol. 26, no. 1, pp. 23~45, 2020.

ACM Style
Kim, J., Kim, M. Y., and Kwon, O., 2020. The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms. Journal of Intelligence and Information Systems. 26, 1, 23--45.
Export Formats : BiBTeX, EndNote

Warning: include(/home/hosting_users/ev_jiisonline/www/admin/archive/advancedSearch.php) [function.include]: failed to open stream: No such file or directory in /home/hosting_users/ev_jiisonline/www/archive/detail.php on line 429

Warning: include() [function.include]: Failed opening '/home/hosting_users/ev_jiisonline/www/admin/archive/advancedSearch.php' for inclusion (include_path='.:/usr/local/php/lib/php') in /home/hosting_users/ev_jiisonline/www/archive/detail.php on line 429
@article{Kim:JIIS:2020:800,
author = {Kim, Jeonghun and Kim, Min Yong and Kwon, Ohbyung},
title = {The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms},
journal = {Journal of Intelligence and Information Systems},
issue_date = {March 2020},
volume = {26},
number = {1},
month = Mar,
year = {2020},
issn = {2288-4866},
pages = {23--45},
url = {http://dx.doi.org/10.13088/jiis.2020.26.1.023 },
doi = {10.13088/jiis.2020.26.1.023},
publisher = {Korea Intelligent Information System Society},
address = {Seoul, Republic of Korea},
keywords = { Multi Class, Classification Algorithm, Meta-Feature, HHI and Data Complexity
},
}
%0 Journal Article
%1 800
%A Jeonghun Kim
%A Min Yong Kim
%A Ohbyung Kwon
%T The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms
%J Journal of Intelligence and Information Systems
%@ 2288-4866
%V 26
%N 1
%P 23-45
%D 2020
%R 10.13088/jiis.2020.26.1.023
%I Korea Intelligent Information System Society