< Previous   List   Next >  
Performance of Investment Strategy using Investor-specific Transaction Information and Machine Learning
Full-text Download
Kyung Mock Kim (Graduate School of Business IT, Kookmin University)
Sun Woong Kim (Graduate School of Business IT, Kookmin University)
Heung Sik Choi (Graduate School of Business IT, Kookmin University)
Vol. 27, No. 1, Page: 65 ~ 82
Investor-specific Transaction Information, Machine Learning, Robo-advisor, Trading System
Stock market investors are generally split into foreign investors, institutional investors, and individual investors. Compared to individual investor groups, professional investor groups such as foreign investors have an advantage in information and financial power and, as a result, foreign investors are known to show good investment performance among market participants.
The purpose of this study is to propose an investment strategy that combines investor-specific transaction information and machine learning, and to analyze the portfolio investment performance of the proposed model using actual stock price and investor-specific transaction data. The Korea Exchange offers daily information on the volume of purchase and sale of each investor to securities firms. We developed a data collection program in C# programming language using an API provided by Daishin Securities Cybosplus, and collected 151 out of 200 KOSPI stocks with daily opening price, closing price and investor-specific net purchase data from January 2, 2007 to July 31, 2017.
The self-organizing map model is an artificial neural network that performs clustering by unsupervised learning and has been introduced by Teuvo Kohonen since 1984. We implement competition among intra-surface artificial neurons, and all connections are non-recursive artificial neural networks that go from bottom to top. It can also be expanded to multiple layers, although many fault layers are commonly used. Linear functions are used by active functions of artificial nerve cells, and learning rules use Instar rules as well as general competitive learning. The core of the backpropagation model is the model that performs classification by supervised learning as an artificial neural network.
We grouped and transformed investor-specific transaction volume data to learn backpropagation models through the self-organizing map model of artificial neural networks. As a result of the estimation of verification data through training, the portfolios were rebalanced monthly. For performance analysis, a passive portfolio was designated and the KOSPI 200 and KOSPI index returns for proxies on market returns were also obtained.
Performance analysis was conducted using the equally-weighted portfolio return, compound interest rate, annual return, Maximum Draw Down, standard deviation, and Sharpe Ratio. Buy and hold returns of the top 10 market capitalization stocks are designated as a benchmark. Buy and hold strategy is the best strategy under the efficient market hypothesis. The prediction rate of learning data using backpropagation model was significantly high at 96.61%, while the prediction rate of verification data was also relatively high in the results of the 57.1% verification data. The performance evaluation of self-organizing map grouping can be determined as a result of a backpropagation model. This is because if the grouping results of the self-organizing map model had been poor, the learning results of the backpropagation model would have been poor. In this way, the performance assessment of machine learning is judged to be better learned than previous studies.
Our portfolio doubled the return on the benchmark and performed better than the market returns on the KOSPI and KOSPI 200 indexes. In contrast to the benchmark, the MDD and standard deviation for portfolio risk indicators also showed better results. The Sharpe Ratio performed higher than benchmarks and stock market indexes. Through this, we presented the direction of portfolio composition program using machine learning and investor-specific transaction information and showed that it can be used to develop programs for real stock investment.
The return is the result of monthly portfolio composition and asset rebalancing to the same proportion. Better outcomes are predicted when forming a monthly portfolio if the system is enforced by rebalancing the suggested stocks continuously without selling and re-buying it. Therefore, real transactions appear to be relevant.
Show/Hide Detailed Information in Korean
투자자별 거래정보와 머신러닝을 활용한 투자전략의 성과
김경목 (국민대학교 비즈니스IT전문대학원)
김선웅 (국민대학교 비즈니스IT전문대학원)
최흥식 (국민대학교 비즈니스IT전문대학원)
투자자별 거래량 정보, 기계학습, 로보어드바이저, 트레이딩시스템
주식시장에 참여하는 투자자들은 크게 외국인투자자, 기관투자자, 그리고 개인투자자로 구분된다. 외국인투자자 같은 전문투자자 집단은 개인투자자 집단과 비교하여 정보력과 자금력에서 우위를 보이고 있으며, 그 결과 시장 참여자들 사이에는 외국인투자자들이 좋은 투자 성과를 보이는 것으로 알려져 있다. 외국인 투자자들은 근래에는 인공지능을 이용한 투자를 많이 하고 있다.
본 연구의 목적은 투자자별 거래량 정보와 머신러닝을 결합하는 투자전략을 제안하고, 실제 주가와 투자자별 거래량 데이터를 이용하여 제안 모형의 포트폴리오 투자 성과를 분석하는 것이다. 일별 투자자별 매수 수량과 매도 수량 정보는 한국거래소에서 공개하고 있는 자료를 활용하였으며, 여기에 인공신경망을 결합하여 최적의 포트폴리오 전략을 도출하고자 하였다.
본 연구에서는 자기 조직화 지도 모형 인공신경망을 이용하여 투자자별 거래량 데이터를 그룹화하고 그룹화한 데이터를 변환하여 오류역전파 모형을 학습하였다. 학습 후 검증 데이터 예측결과로 매월 포트폴리오 구성을 하도록 개발하였다. 성과 분석을 위해 포트폴리오의 벤치마크를 지정 하였고 시장 수익률 비교를 위해 KOSPI200, KOSPI 지수 수익률도 구하였다. 포트폴리오의 동일배분 수익률, 복리 수익률, 연평균 수익률, MDD, 표준편차, 샤프지수, 벤치마크로 지정한 시가총액 상위 10종목의 Buy and Hold 수익률 등을 사용하여 성과 분석을 진행하였다. 분석 결과 포트폴리오가 벤치마크 대비 2배 수익률을 올렸으며 시장 수익률보다 좋은 성과를 보였다. MDD와 표준편차는 포트폴리오와 벤치마크가 비슷한 결과로 성과 대비 비교한다면 포트폴리오가 좋은 성과라고 할 수 있다. 샤프지수도 포트폴리오가 벤치마크와 시장 결과보다 좋은 성과를 내었다. 이를 통해 머신러닝과 투자자별 거래정보 분석을 활용한 포트폴리오 구성 프로그램 개발의 방향을 제시하였고 실제 주식 투자를 위한 프로그램 개발에 활용할 수 있음을 보였다.
Cite this article
JIIS Style
Kim, K. M., S. W. Kim, and H. S. Choi, "Performance of Investment Strategy using Investor-specific Transaction Information and Machine Learning", Journal of Intelligence and Information Systems, Vol. 27, No. 1 (2021), 65~82.

IEEE Style
Kyung Mock Kim, Sun Woong Kim, and Heung Sik Choi, "Performance of Investment Strategy using Investor-specific Transaction Information and Machine Learning", Journal of Intelligence and Information Systems, vol. 27, no. 1, pp. 65~82, 2021.

ACM Style
Kim, K. M., Kim, S. W., and Choi, H. S., 2021. Performance of Investment Strategy using Investor-specific Transaction Information and Machine Learning. Journal of Intelligence and Information Systems. 27, 1, 65--82.
Export Formats : BiBTeX, EndNote
Advanced Search
Date Range

author = {Kim, Kyung Mock and Kim, Sun Woong and Choi, Heung Sik},
title = {Performance of Investment Strategy using Investor-specific Transaction Information and Machine Learning},
journal = {Journal of Intelligence and Information Systems},
issue_date = {March 2021},
volume = {27},
number = {1},
month = Mar,
year = {2021},
issn = {2288-4866},
pages = {65--82},
url = {},
doi = {},
publisher = {Korea Intelligent Information System Society},
address = {Seoul, Republic of Korea},
keywords = { Investor-specific Transaction Information, Machine Learning, Robo-advisor and Trading System },
%0 Journal Article
%1 834
%A Kyung Mock Kim
%A Sun Woong Kim
%A Heung Sik Choi
%T Performance of Investment Strategy using Investor-specific Transaction Information and Machine Learning
%J Journal of Intelligence and Information Systems
%@ 2288-4866
%V 27
%N 1
%P 65-82
%D 2021
%I Korea Intelligent Information System Society