DIGITAL LIBRARY ARCHIVE
HOME > DIGITAL LIBRARY ARCHIVE
< Previous   List   Next >  
Structural features and Diffusion Patterns of Gartner Hype Cycle for Artificial Intelligence using Social Network analysis
Full-text Download
Sunah Shin (Business Analytics, School of Business, Ajou University)
Juyoung Kang (Department of e-Business, School of Business, Ajou University)
Vol. 28, No. 1, Page: 107 ~ 129
Keywords
Gartner Hype Cycle, Social Network Analysis, Innovation Diffusion, Twitter, Artificial Intellingece
Abstract
It is important to preempt new technology because the technology competition is getting much tougher. Stakeholders conduct exploration activities continuously for new technology preoccupancy at the right time. Gartner's Hype Cycle has significant implications for stakeholders. The Hype Cycle is a expectation graph for new technologies which is combining the technology life cycle (S-curve) with the Hype Level. Stakeholders such as R&D investor, CTO(Chef of Technology Officer) and technical personnel are very interested in Gartner's Hype Cycle for new technologies. Because high expectation for new technologies can bring opportunities to maintain investment by securing the legitimacy of R&D investment. However, contrary to the high interest of the industry, the preceding researches faced with limitations aspect of empirical method and source data(news, academic papers, search traffic, patent etc.).
In this study, we focused on two research questions. The first research question was 'Is there a difference in the characteristics of the network structure at each stage of the hype cycle?'. To confirm the first research question, the structural characteristics of each stage were confirmed through the component cohesion size. The second research question is ‘Is there a pattern of diffusion at each stage of the hype cycle?’. This research question was to be solved through centralization index and network density. The centralization index is a concept of variance, and a higher centralization index means that a small number of nodes are centered in the network. Concentration of a small number of nodes means a star network structure. In the network structure, the star network structure is a centralized structure and shows better diffusion performance than a decentralized network (circle structure). Because the nodes which are the center of information transfer can judge useful information and deliver it to other nodes the fastest. So we confirmed the out-degree centralization index and in-degree centralization index for each stage.
For this purpose, we confirmed the structural features of the community and the expectation diffusion patterns using Social Network Serice(SNS) data in 'Gartner Hype Cycle for Artificial Intelligence, 2021'. Twitter data for 30 technologies (excluding four technologies) listed in 'Gartner Hype Cycle for Artificial Intelligence, 2021' were analyzed. Analysis was performed using R program (4.1.1 ver) and Cyram Netminer. From October 31, 2021 to November 9, 2021, 6,766 tweets were searched through the Twitter API, and converting the relationship user's tweet(Source) and user's retweets (Target). As a result, 4,124 edgelists were analyzed.
As a reult of the study, we confirmed the structural features and diffusion patterns through analyze the component cohesion size and degree centralization and density. Through this study, we confirmed that the groups of each stage increased number of components as time passed and the density decreased. Also 'Innovation Trigger' which is a group interested in new technologies as a early adopter in the innovation diffusion theory had high out-degree centralization index and the others had higher in-degree centralization index than out-degree. It can be inferred that 'Innovation Trigger' group has the biggest influence, and the diffusion will gradually slow down from the subsequent groups.
In this study, network analysis was conducted using social network service data unlike methods of the precedent researches. This is significant in that it provided an idea to expand the method of analysis when analyzing Gartner's hype cycle in the future. In addition, the fact that the innovation diffusion theory was applied to the Gartner's hype cycle's stage in artificial intelligence can be evaluated positively because the Gartner hype cycle has been repeatedly discussed as a theoretical weakness. Also it is expected that this study will provide a new perspective on decision-making on technology investment to stakeholdes.

Show/Hide Detailed Information in Korean
인공지능 기술에 관한 가트너 하이프사이클의 네트워크 집단구조 특성 및 확산패턴에 관한 연구
신선아 (아주대학교 경영대학 비즈니스애널리틱스학과)
강주영 (아주대학교 경영대학 e-비즈니스학과)
Keywords
하이프사이클, 소셜네트워크분석, 혁신확산, 트위터, 인공지능
Abstract
기술경쟁이 심화되고 있는 오늘날 신기술에 대한 선도적 위치의 선점이 중요하다. 선도적 위치의 선점과 적정시점에 기술 획득·관리를 위해 이해관계자들은 지속적으로 기술에 대한 탐색활동을 수행한다. 이를 위한 참고 자료로서 가트너 하이프 사이클(Gartner Hype Cycle)은 중요한 의미가 있다. 하이프 사이클은 기술수명주기(S-curve)와 하이프 수준(Hype Level)을 결합하여 새로운 기술에 대한 대중의 기대감을 시간의 흐름에 따라 나타낸 그래프이다. 새로운 기술에 대한 기 대는 기술사업화뿐만 아니라 연구개발 투자의 정당성, 투자유치를 위한 기회의 발판이 된다는 점에서 연구개발 담당자 및 기술투자자의 관심이 높다. 그러나 산업계의 높은 관심에 비해 실증분석을 시도한 선행연구는 다양하지 못하다. 선행문헌 분석결과 데이터 종류(뉴스, 논문, 주가지수, 검색 트래픽 등)나 분석방법은 한정적이었다. 이에 본 연구에서는 확산의 주요한 채널이 되어가고 있는 소셜네트워크서비스의 데이터를 활용하여 ‘Gartner Hype Cycle for Artificial Intelligence, 2021’의 단계별 기술들에 대한 집단구조(커뮤니티)의 특성과 커뮤니티 간 정보 확산패턴을 분석하고자 한다. 이를 위해 컴포넌트 응집규모(Component Cohesion Size)를 통해 각 단계별 구조적 특성과 연결중심화(Degree Centralization)와 밀도(Density)를 통해 확산의 방식을 확인하였다. 연구결과 기술을 수용하는 단계별 집단들의 커뮤니케이션 활동이 시간이 지 날 수록 분절이 커지며 밀도 역시 감소함을 확인하였다. 또한 새로운 기술에 대한 관심을 촉발하는 혁신태동기 집단의 경우 정보확산을 촉발하는 외향연결(Out-degree) 중심화 지수가 높았으며, 이후의 단계는 정보를 수용하는 내향연결(In-degree) 중심화 지수가 높은 것으로 나타났다. 해당 연구를 통해 하이프 사이클에 관한 이론적 기초를 제공할 것이다. 또한 인공지능기술에 대한 기술관심집단들의 기대감을 반영한 정보확산의 특성과 패턴을 소셜데이터를 통해 분석함으로 써 기업의 기술투자 의사결정에 새로운 시각을 제공할 것이다.
Cite this article
JIIS(APA) Style
Shin, S., & Kang, J. (2022). Structural features and Diffusion Patterns of Gartner Hype Cycle for Artificial Intelligence using Social Network analysis. Journal of Intelligence and Information Systems, 28(1), 107-129.

IEEE Style
Sunah Shin, and Juyoung Kang, "Structural features and Diffusion Patterns of Gartner Hype Cycle for Artificial Intelligence using Social Network analysis", Journal of Intelligence and Information Systems, vol. 28, no. 1, pp. 107~129, 2022.

ACM Style
Shin, S., & Kang, J., 2022. Structural features and Diffusion Patterns of Gartner Hype Cycle for Artificial Intelligence using Social Network analysis. Journal of Intelligence and Information Systems. 28, 1, 107--129.
Export Formats : BiBTeX, EndNote
Advanced Search
Date Range

to
Search
@article{Shin:JIIS:2022:865,
author = {Shin, Sunah and Kang, Juyoung},
title = {Structural features and Diffusion Patterns of Gartner Hype Cycle for Artificial Intelligence using Social Network analysis},
journal = {Journal of Intelligence and Information Systems},
issue_date = {March 2022},
volume = {28},
number = {1},
month = Mar,
year = {2022},
issn = {2288-4866},
pages = {107--129},
url = {},
doi = {},
publisher = {Korea Intelligent Information System Society},
address = {Seoul, Republic of Korea},
keywords = { Gartner Hype Cycle, Social Network Analysis, Innovation Diffusion, Twitter and Artificial Intellingece },
}
%0 Journal Article
%1 865
%A Sunah Shin
%A Juyoung Kang
%T Structural features and Diffusion Patterns of Gartner Hype Cycle for Artificial Intelligence using Social Network analysis
%J Journal of Intelligence and Information Systems
%@ 2288-4866
%V 28
%N 1
%P 107-129
%D 2022
%R
%I Korea Intelligent Information System Society