Journal of Intelligence and Information Systems,
Vol. 17, No. 3, September 2011
A Methodology of Measuring Degree of Contextual Subjective Well-Being Using Affective Predicates for Mental Health Aware Service
Oh-Byung Kwon, and Suk-Jae Choi
Vol. 17, No. 3, Page: 1 ~ 23
Keywords : Subjective well-being, Negative feeling, Context-aware service, Satisfaction
The contextual subjective well-being (SWB) of context-aware system users can be very helpful in recommending relevant mental health services, especially for those who struggle with mental illness due to a metabolic syndrome or melancholia. Self-surveying measuring or auto-sensing methods have been suggested to monitor users' SWB. However, self-surveying measuring method is not inappropriate for a context-aware service due to requesting personal data in a manual and hence obtrusive manner. Moreover, auto-sensing methods still suffer from accuracy problem to be applied in mental health services. Hence, the purpose of this paper is to propose a contextual SWB estimation method to estimate the user's mental health in unobtrusive and accurate manners. This method is timely in that it acquires context data from the user's literal responses, which expose their temporal feeling. In particular, we developed a measuring method based on exposed feeling verbs and degree adverbs in chat and other text-based communications which show anger or negative feelings. Based on the proposed contextual SWB degree estimation method, we developed an idea of well-being life care recommendation. From the experiment with actual drivers, we demonstrated that the proposed method accurately estimate the user's degree of negative feelings even though it does not require a self-survey.
Corporate Credit Rating based on Bankruptcy Probability Using AdaBoost Algorithm-based Support Vector Machine
Taek-Soo Shin, and Tae-Ho Hong
Vol. 17, No. 3, Page: 25 ~ 41
Keywords : Corporate Credit Rating, AdaBoost Algorithm, Bankruptcy Probability, IT Company
Recently, support vector machines (SVMs) are being recognized as competitive tools as compared with other data mining techniques for solving pattern recognition or classification decision problems. Furthermore, many researches, in particular, have proved them more powerful than traditional artificial neural networks (ANNs) (Amendolia et al., 2003; Huang et al., 2004, Huang et al., 2005; Tay and Cao, 2001; Min and Lee, 2005; Shin et al., 2005; Kim, 2003).The classification decision, such as a binary or multi-class decision problem, used by any classifier, i.e. data mining techniques is so cost-sensitive particularly in financial classification problems such as the credit ratings that if the credit ratings are misclassified, a terrible economic loss for investors or financial decision makers may happen. Therefore, it is necessary to convert the outputs of the classifier into wellcalibrated posterior probabilities-based multiclass credit ratings according to the bankruptcy probabilities. However, SVMs basically do not provide such probabilities. So it required to use any method to create the probabilities (Platt, 1999; Drish, 2001). This paper applied AdaBoost algorithm-based support vector machines (SVMs) into a bankruptcy prediction as a binary classification problem for the IT companies in Korea and then performed the multi-class credit ratings of the companies by making a normal distribution shape of posterior bankruptcy probabilities from the loss functions extracted from the SVMs. Our proposed approach also showed that their methods can minimize the misclassification problems by adjusting the credit grade interval ranges on condition that each credit grade for credit loan borrowers has its own credit risk, i.e. bankruptcy probability.
Dynamic Decision Making using Social Context based on Ontology
Hyun-Woo Kim, M.-Ye Sohn, and Hyun-Jung Lee
Vol. 17, No. 3, Page: 43 ~ 61
Keywords : Social Context, Ontology, Case-Based Reasoning
In this research, we propose a dynamic decision making using social context based on ontology. Dynamic adaptation is adopted for the high qualified decision making, which is defined as creation of proper information using contexts depending on decision maker's state of affairs in ubiquitous computing environment. Thereby, the context for the dynamic adaptation is classified as a static, dynamic and social context. Static context contains personal explicit information like demographic data. Dynamic context like weather or traffic information is provided by external information service provider. Finally, social context implies much more implicit knowledge such as social relationship than the other two-type context, but it is not easy to extract any implied tacit knowledge as well as generalized rules from the information. So, it was not easy for the social context to apply into dynamic adaptation. In this light, we tried the social context into the dynamic adaptation to generate context-appropriate personalized information. It is necessary to build modeling methodology to adopt dynamic adaptation using the context. The proposed context modeling used ontology and cases which are best to represent tacit and unstructured knowledge such as social context. Case-based reasoning and constraint satisfaction problem is applied into the dynamic decision making system for the dynamic adaption. Case-based reasoning is used case to represent the context including social, dynamic and static and to extract personalized knowledge from the personalized case-base. Constraint satisfaction problem is used when the selected case through the case-based reasoning needs dynamic adaptation, since it is usual to adapt the selected case because context can be changed timely according to environment status. The case-base reasoning adopts problem context for effective representation of static, dynamic and social context, which use a case structure with index and solution and problem ontology of decision maker. The case is stored in case-base as a repository of a decision maker's personal experience and knowledge. The constraint satisfaction problem use solution ontology which is extracted from collective intelligence which is generalized from solutions of decision makers. The solution ontology is retrieved to find proper solution depending on the decision maker's context when it is necessary. At the same time, dynamic adaptation is applied to adapt the selected case using solution ontology. The decision making process is comprised of following steps. First, whenever the system aware new context, the system converses the context into problem context ontology with case structure. Any context is defined by a case with a formal knowledge representation structure. Thereby, social context as implicit knowledge is also represented a formal form like a case. In addition, for the context modeling, ontology is also adopted. Second, we select a proper case as a decision making solution from decision maker's personal case-base. We convince that the selected case should be the best case depending on context related to decision maker's current status as well as decision maker's requirements. However, it is possible to change the environment and context around the decision maker and it is necessary to adapt the selected case. Third, if the selected case is not available or the decision maker doesn't satisfy according to the newly arrived context, then constraint satisfaction problem and solution ontology is applied to derive new solution for the decision maker. The constraint satisfaction problem uses to the previously selected case to adopt and solution ontology. The verification of the proposed methodology is processed by searching a meeting place according to the decision maker's requirements and context, the extracted solution shows the satisfaction depending on meeting purpose.
Methods for Integration of Documents using Hierarchical Structure based on the Formal Concept Analysis
Tae-Hwan Kim, Ho-Cheol Jeon, and Joong-Min Choi
Vol. 17, No. 3, Page: 63 ~ 77
Keywords : Related Documents Retrieval, Integration of Documents, Semantic Expansion
The World Wide Web is a very large distributed digital information space. From its origins in 1991, the web has grown to encompass diverse information resources as personal home pasges, online digital libraries and virtual museums. Some estimates suggest that the web currently includes over 500 billion pages in the deep web. The ability to search and retrieve information from the web efficiently and effectively is an enabling technology for realizing its full potential. With powerful workstations and parallel processing technology, efficiency is not a bottleneck. In fact, some existing search tools sift through gigabyte.syze precompiled web indexes in a fraction of a second. But retrieval effectiveness is a different matter. Current search tools retrieve too many documents, of which only a small fraction are relevant to the user query. Furthermore, the most relevant documents do not nessarily appear at the top of the query output order. Also, current search tools can not retrieve the documents related with retrieved document from gigantic amount of documents. The most important problem for lots of current searching systems is to increase the quality of search. It means to provide related documents or decrease the number of unrelated documents as low as possible in the results of search. For this problem, CiteSeer proposed the ACI (Autonomous Citation Indexing) of the articles on the World Wide Web. A "citation index" indexes the links between articles that researchers make when they cite other articles. Citation indexes are very useful for a number of purposes, including literature search and analysis of the academic literature. For details of this work, references contained in academic articles are used to give credit to previous work in the literature and provide a link between the "citing" and "cited" articles. A citation index indexes the citations that an article makes, linking the articleswith the cited works. Citation indexes were originally designed mainly for information retrieval. The citation links allow navigating the literature in unique ways. Papers can be located independent of language, and words in thetitle, keywords or document. A citation index allows navigation backward in time (the list of cited articles) and forwardin time (which subsequent articles cite the current article?) But CiteSeer can not indexes the links between articles that researchers doesn't make. Because it indexes the links between articles that only researchers make when they cite other articles. Also, CiteSeer is not easy to scalability. Because CiteSeer can not indexes the links between articles that researchers doesn't make. All these problems make us orient for designing more effective search system. This paper shows a method that extracts subject and predicate per each sentence in documents. A document will be changed into the tabular form that extracted predicate checked value of possible subject and object. We make a hierarchical graph of a document using the table and then integrate graphs of documents. The graph of entire documents calculates the area of document as compared with integrated documents. We mark relation among the documents as compared with the area of documents. Also it proposes a method for structural integration of documents that retrieves documents from the graph. It makes that the user can find information easier. We compared the performance of the proposed approaches with lucene search engine using the formulas for ranking. As a result, the F.measure is about 60% and it is better as about 15%.
Enhanced Recommendation Algorithm using Semantic Collaborative Filtering: E-commerce Portal
Jongwoo Kim, and Sanggil Kang
Vol. 17, No. 3, Page: 79 ~ 98
Keywords : Collaborative Filtering, Semantic Similarity, Recommendation Method, Electronic Commerce, Personalization
This paper proposes a semantic recommendation technique for a personalized e-commerce portal. Semantic recommendation is achieved by utilizing the attributes of products. The semantic similarity of the products is merged with the rating information of the products to provide an accurate recommendation. The recommendation technique also analyzes various attitudes of the customer to evaluate the implicit rating of products. Attitudes are classifies into three types such as "purchasing product", "adding product to shopping cart", and "viewing the product information." We implicitly track customer attitude to estimate the rating of products for recommending products. Also we implement a session validation process to identify the valid sessions that are highly important for giving an accurate recommendation. Our recommendation technique shows a high degree of accuracy as we use age groupings of customers with similar preferences. The experimental section shows that our proposed recommendation method outperforms well known collaborative filtering methods not only for the existing customer, but also for the new user with no previous purchase record.
Applying Centrality Analysis to Solve the Cold-Start and Sparsity Problems in Collaborative Filtering
Yoon-Ho Cho, and Joung-Hae Bang
Vol. 17, No. 3, Page: 99 ~ 114
Keywords : Centrality Analysis, Cold-start Recommendation, Sparsity, Social Network Analysis, Collaborative Filtering
Collaborative Filtering (CF) suffers from two major problems:sparsity and cold-start recommendation. This paper focuses on the cold-start problem for new customers with no purchase records and the sparsity problem for the customers with very few purchase records. For the purpose, we propose a method for the new customer recommendation by using a combined measure based on three well-used centrality measures to identify the customers who are most likely to become neighbors of the new customer. To alleviate the sparsity problem, we also propose a hybrid approach that applies our method to customers with very few purchase records and CF to the other customers with sufficient purchases. To evaluate the effectiveness of our method, we have conducted several experiments using a data set from a department store in Korea. The experiment results show that the combination of two measures makes better recommendations than not only a single measure but also the best-seller-based method and that the performance is improved when applying the hybrid approach.
The Effects of Customer Product Review on Social Presence in Personalized Recommender Systems
Jae-Won Choi, and Hong-Joo Lee
Vol. 17, No. 3, Page: 115 ~ 130
Keywords : Recommender Systems, Customer Product Review, Social Presence
Many online stores bring features that can build trust in their customers. More so, the number of products or content services on online stores has been increasing rapidly. Hence, personalization on online stores is considered to be an important technology to companies and customers. Recommender systems that provide favorable products and customer product reviews to users are the most commonly used features in this purpose. There are many studies to that investigated the relationship between social presence as an antecedent of trust and provision of recommender systems or customer product reviews. Many online stores have made efforts to increase perceived social presence of their customers through customer reviews, recommender systems, and analyzing associations among products. Primarily because social presence can increase customer trust or reuse intention for online stores. However, there were few studies that investigated the interactions between recommendation type, product type and provision of customer product reviews on social presence. Therefore, one of the purposes of this study is to identify the effects of personalized recommender systems and compare the role of customer reviews with product types. This study performed an experiment to see these interactions. Experimental web pages were developed with $2{\times}2$ 수식 이미지 factorial setting based on how to provide social presence to users with customer reviews and two product types such as hedonic and utilitarian. The hedonic type was a ringtone chosen from while the utilitarian was a TOEIC study aid book selected from To conduct the experiment, web based experiments were conducted for the participants who have been shopping on the online stores. Participants were a total of 240 and 30% of the participants had the chance of getting the presents. We found out that social presence increased for hedonic products when personalized recommendations were given compared to non.personalized recommendations. Although providing customer reviews for two product types did not significantly increase social presence, provision of customer product reviews for hedonic (ringtone) increased perceived social presence. Otherwise, provision of customer product reviews could not increase social presence when the systems recommend utilitarian products (TOEIC study.aid books). Therefore, it appears that the effects of increasing perceived social presence with customer reviews have a difference for product types. In short, the role of customer reviews could be different based on which product types were considered by customers when they are making a decision related to purchasing on the online stores. Additionally, there were no differences for increasing perceived social presence when providing customer reviews. Our participants might have focused on how recommendations had been provided and what products were recommended because our developed systems were providing recommendations after participants rating their preferences. Thus, the effects of customer reviews could appear more clearly if our participants had actual purchase opportunity for the recommendations. Personalized recommender systems can increase social presence of customers more than nonpersonalized recommender systems by using user preference. Online stores could find out how they can increase perceived social presence and satisfaction of their customers when customers want to find the proper products with recommender systems and customer reviews. In addition, the role of customer reviews of the personalized recommendations can be different based on types of the recommended products. Even if this study conducted two product types such as hedonic and utilitarian, the results revealed that customer reviews for hedonic increased social presence of customers more than customer reviews for utilitarian. Thus, online stores need to consider the role of providing customer reviews with highly personalized information based on their product types when they develop the personalized recommender systems.
A Study on the Design of Case-based Reasoning Office Knowledge Recommender System for Office Professionals
Myong-Ok Kim, and Jung-Ah Na
Vol. 17, No. 3, Page: 131 ~ 146
Keywords : Case-Based Reasoning, Office Knowledge Management, Office Knowledge Recommender
It is becoming more essential than ever for office professionals to become competent in information collection/gathering and problem solving in today's global business society. In particular, office professionals do not only assist simple chores but are also forced to make decisions as quickly and efficiently as possible in problematic situations that can end in either profit or loss to their company. Since office professionals rely heavily on their tacit knowledge to solve problems that arise in everyday business situations, it is truly helpful and efficient to refer to similar business cases from the past and share or reuse such previous business knowledge for better performance results. Case-based reasoning(CBR) is a problem-solving method which utilizes previous similar cases to solve problems. Through CBR, the closest case to the current business situation can be searched and retrieved from the case or knowledge base and can be referred to for a new solution. This reduces the time and resources needed and increase success probability. The main purpose of this study is to design a system called COKRS(Case-based reasoning Office Knowledge Recommender System) and develop a prototype for it. COKRS manages cases and their meta data, accepts key words from the user and searches the casebase for the most similar past case to the input keyword, and communicates with users to collect information about the quality of the case provided and continuously apply the information to update values on the similarity table. Core concepts like system architecture, definition of a case, meta database, similarity table have been introduced, and also an algorithm to retrieve all similar cases from past work history has also been proposed. In this research, a case is best defined as a work experience in office administration. However, defining a case in office administration was not an easy task in reality. We surveyed 10 office professionals in order to get an idea of how to define a case in office administration and found out that in most cases any type of office work is to be recorded digitally and/or non-digitally. Therefore, we have defined a record or document case as for COKRS. Similarity table was composed of items of the result of job analysis for office professionals conducted in a previous research. Values between items of the similarity table were initially set to those from researchers' experiences and literature review. The results of this study could also be utilized in other areas of business for knowledge sharing wherever it is necessary and beneficial to share and learn from past experiences. We expect this research to be a reference for researchers and developers who are in this area or interested in office knowledge recommendation system based on CBR. Focus group interview(FGI) was conducted with ten administrative assistants carefully selected from various areas of business. They were given a chance to try out COKRS in an actual work setting and make some suggestions for future improvement. FGI has identified the user-interface for saving and searching cases for keywords as the most positive aspect of COKRS, and has identified the most urgently needed improvement as transforming tacit knowledge and knowhow into recorded documents more efficiently. Also, the focus group has mentioned that it is essential to secure enough support, encouragement, and reward from the company and promote positive attitude and atmosphere for knowledge sharing for everybody's benefit in the company.
New Collaborative Filtering Based on Similarity Integration and Temporal Information
Keun-Ho Choi, Gun-Woo Kim, Dong-Hee Yoo, and Yong-Moo Suh
Vol. 17, No. 3, Page: 147 ~ 168
Keywords : Recommender System, Collaborative Filtering, Time, Similarity Function
As personalized recommendation of products and services is rapidly growing in importance, a number of studies provided fundamental knowledge and techniques for developing recommendation systems. Among them, the CF technique has been most widely used and has proven to be useful in many practices. However, current collaborative filtering (CF) technique has still considerable rooms for improving the effectiveness of recommendation systems: 1) a similarity function most systems use to find so-called like-minded people is not well defined in that similarity is computed from a single perspective of similarity concept; and 2) temporal information that contains the changing preference of customers needs to be taken into account when making recommendations. We hypothesize that integration of multiple aspects of similarity and utilization of temporal information will improve the accuracy of recommendations. The objective of this paper is to test the hypothesis through a series of experiments using MovieLens data. The experimental results show that the proposed recommendation system highly outperforms the conventional CF-based systems, confirming our hypothesis.
Association-Based Conceptual Modeling for Smart Database Design
Sang-Won Lee
Vol. 17, No. 3, Page: 169 ~ 185
Keywords : Agent, Rule, Relevance, E-R Diagram
Data redundancy is problematic in that it not only induces heavy storage management cost but also could bring critical degradation of information systems. Unfortunately, to our knowledge, only few enterprises willingly afford time and efforts for the faithful conceptual design to prevent the degree of inappropriate data as much as they could, while most of enterprises pay rare attention to the notion of that sort of data quality. Wondering if there would be any other way to design the enterprise.wide data design without prior knowledge about business works is our major motivation for this study. In this paper, we present our data modeling methodology in which associations among objects in each sentences of a business job descriptions are treated as the focal point in database design. A proposed agent for automated design tool simply takes a business job description written in natural language as an input, and then designs an entity relationship diagram with some smart rules. We introduce the scope of the proposed agent and its detailed logics with several examples. And then, we verify the appropriateness of the resulted associations among objects. Lastly, we perform case studies to evaluate the devised agent's applicability to a business field.

Advanced Search
Date Range