DIGITAL LIBRARY ARCHIVE
HOME > DIGITAL LIBRARY ARCHIVE
Journal of Intelligence and Information Systems,
Vol. 18, No. 3, September 2012
Performance Evaluations for Leaf Classification Using Combined Features of Shape and Texture
Seon-Jong Kim, and Dong-Pil Kim
Vol. 18, No. 3, Page: 1 ~ 12
Keywords : Leaf Classification, Shape and Texture, Fourier descriptor, Wavelet
Abstract
There are many trees in a roadside, parks or facilities for landscape. Although we are easily seeing a tree in around, it would be difficult to classify it and to get some information about it, such as its name, species and surroundings of the tree. To find them, you have to find the illustrated books for plants or search for them on internet. The important components of a tree are leaf, flower, bark, and so on. Generally we can classify the tree by its leaves. A leaf has the inherited features of the shape, vein, and so on. The shape is important role to decide what the tree is. And texture included in vein is also efficient feature to classify them. This paper evaluates the performance of a leaf classification system using both shape and texture features. We use Fourier descriptors for shape features, and both gray-level co-occurrence matrices and wavelets for texture features, and used combinations of such features for evaluation of images from the Flavia dataset. We compared the recognition rates and the precision-recall performances of these features. Various experiments showed that a combination of shape and texture gave better results for performance. The best came from the case of a combination of features of shape and texture with a flipped contour for a Fourier descriptor.
Recommending Talks at International Research Conferences
Danielle H. Lee
Vol. 18, No. 3, Page: 13 ~ 34
Keywords : Content-Boosted Recommendation, Cold Start Problem, Social Networks, Hybrid Recommendation, Hybrid Recommendation, Conference Navigator
Abstract
The Paper Explores The Problem Of Recommending Talks To Attend At International Research Conferences. When Researchers Participate In Conferences, Finding Interesting Talks To Attend Is A Real Challenge. Given That Several Presentation Sessions And Social Activities Are Typically Held At A Time, And There Is Little Time To Analyze All Alternatives, It Is Easy To Miss Important Talks. In Addition, Compared With Recommendations Of Products Such As Movies, Books, Music, Etc. The Recipients Of Talk Recommendations (i.e. Conference Attendees) Already Formed Their Own Research Community On The Center Of The Conference Topics. Hence, Recommending Conference Talks Contains Highly Social Context. This Study Suggests That This Domain Would Be Suitable For Social Network-Based Recommendations. In Order To Find Out The Most Effective Recommendation Approach, Three Sources Of Information Were Explored For Talk Recommendation-Whateach Talk Is About (Content), Who Scheduled The Talks (Collaborative), And How The Users Are Connected Socially (Social). Using These Three Sources Of Information, This Paper Examined Several Direct And Hybrid Recommendation Algorithms To Help Users Find Interesting Talks More Easily. Using A Dataset Of A Conference Scheduling System, Conference Navigator, Multiple Approaches Ranging From Classic Content-Based And Collaborative Filtering Recommendations To Social Network-Based Recommendations Were Compared. As The Result, For Cold-Start Users Who Have Insufficient Number Of Items To Express Their Preferences, The Recommendations Based On Their Social Networks Generated The Best Suggestions.
A Study on the Intelligent Service Selection Reasoning for Enhanced User Satisfaction : Appliance to Cloud Computing Service
Dong Cheon Shin
Vol. 18, No. 3, Page: 35 ~ 51
Keywords : Cloud Service Data Management, Service Selection, Service Attribute
Abstract
Cloud computing is internet-based computing where computing resources are offered over the Internet as scalable and on-demand services. In particular, in case a number of various cloud services emerge in accordance with development of internet and mobile technology, to select and provide services with which service users satisfy is one of the important issues. Most of previous works show the limitation in the degree of user satisfaction because they are based on so called concept similarity in relation to user requirements or are lack of versatility of user preferences. This paper presents cloud service selection reasoning which can be applied to the general cloud service environments including a variety of computing resource services, not limited to web services. In relation to the service environments, there are two kinds of services: atomic service and composite service. An atomic service consists of service attributes which represent the characteristics of service such as functionality, performance, or specification. A composite service can be created by composition of atomic services and other composite services. Therefore, a composite service inherits attributes of component services. On the other hand, the main participants in providing with cloud services are service users, service suppliers, and service operators. Service suppliers can register services autonomously or in accordance with the strategic collaboration with service operators. Service users submit request queries including service name and requirements to the service management system. The service management system consists of a query processor for processing user queries, a registration manager for service registration, and a selection engine for service selection reasoning. In order to enhance the degree of user satisfaction, our reasoning stands on basis of the degree of conformance to user requirements of service attributes in terms of functionality, performance, and specification of service attributes, instead of concept similarity as in ontology-based reasoning. For this we introduce so called a service attribute graph (SAG) which is generated by considering the inclusion relationship among instances of a service attribute from several perspectives like functionality, performance, and specification. Hence, SAG is a directed graph which shows the inclusion relationships among attribute instances. Since the degree of conformance is very close to the inclusion relationship, we can say the acceptability of services depends on the closeness of inclusion relationship among corresponding attribute instances. That is, the high closeness implies the high acceptability because the degree of closeness reflects the degree of conformance among attributes instances. The degree of closeness is proportional to the path length between two vertex in SAG. The shorter path length means more close inclusion relationship than longer path length, which implies the higher degree of conformance. In addition to acceptability, in this paper, other user preferences such as priority for attributes and mandatary options are reflected for the variety of user requirements. Furthermore, to consider various types of attribute like character, number, and boolean also helps to support the variety of user requirements. Finally, according to service value to price cloud services are rated and recommended to users. One of the significances of this paper is the first try to present a graph-based selection reasoning unlike other works, while considering various user preferences in relation with service attributes.
A Study on Differences of Contents and Tones of Arguments among Newspapers Using Text Mining Analysis
Miah Kam, and Min Song
Vol. 18, No. 3, Page: 53 ~ 77
Keywords : Newspapers, Tone of Arguments, Contents, Clustering, Clustering, Classification, The Kyunghyang Shinmun, The Hankyoreh, The Dong-A Ilbo, International Section
Abstract
This study analyses the difference of contents and tones of arguments among three Korean major newspapers, the Kyunghyang Shinmoon, the HanKyoreh, and the Dong-A Ilbo. It is commonly accepted that newspapers in Korea explicitly deliver their own tone of arguments when they talk about some sensitive issues and topics. It could be controversial if readers of newspapers read the news without being aware of the type of tones of arguments because the contents and the tones of arguments can affect readers easily. Thus it is very desirable to have a new tool that can inform the readers of what tone of argument a newspaper has. This study presents the results of clustering and classification techniques as part of text mining analysis. We focus on six main subjects such as Culture, Politics, International, Editorial-opinion, Eco-business and National issues in newspapers, and attempt to identify differences and similarities among the newspapers. The basic unit of text mining analysis is a paragraph of news articles. This study uses a keyword-network analysis tool and visualizes relationships among keywords to make it easier to see the differences. Newspaper articles were gathered from KINDS, the Korean integrated news database system. KINDS preserves news articles of the Kyunghyang Shinmun, the HanKyoreh and the Dong-A Ilbo and these are open to the public. This study used these three Korean major newspapers from KINDS. About 3,030 articles from 2008 to 2012 were used. International, national issues and politics sections were gathered with some specific issues. The International section was collected with the keyword of 'Nuclear weapon of North Korea.' The National issues section was collected with the keyword of '4-major-river.' The Politics section was collected with the keyword of 'Tonghap-Jinbo Dang.' All of the articles from April 2012 to May 2012 of Eco-business, Culture and Editorial-opinion sections were also collected. All of the collected data were handled and edited into paragraphs. We got rid of stop-words using the Lucene Korean Module. We calculated keyword co-occurrence counts from the paired co-occurrence list of keywords in a paragraph. We made a co-occurrence matrix from the list. Once the co-occurrence matrix was built, we used the Cosine coefficient matrix as input for PFNet(Pathfinder Network). In order to analyze these three newspapers and find out the significant keywords in each paper, we analyzed the list of 10 highest frequency keywords and keyword-networks of 20 highest ranking frequency keywords to closely examine the relationships and show the detailed network map among keywords. We used NodeXL software to visualize the PFNet. After drawing all the networks, we compared the results with the classification results. Classification was firstly handled to identify how the tone of argument of a newspaper is different from others. Then, to analyze tones of arguments, all the paragraphs were divided into two types of tones, Positive tone and Negative tone. To identify and classify all of the tones of paragraphs and articles we had collected, supervised learning technique was used. The Na$\ddot{i}$ 수식 이미지ve Bayesian classifier algorithm provided in the MALLET package was used to classify all the paragraphs in articles. After classification, Precision, Recall and F-value were used to evaluate the results of classification. Based on the results of this study, three subjects such as Culture, Eco-business and Politics showed some differences in contents and tones of arguments among these three newspapers. In addition, for the National issues, tones of arguments on 4-major-rivers project were different from each other. It seems three newspapers have their own specific tone of argument in those sections. And keyword-networks showed different shapes with each other in the same period in the same section. It means that frequently appeared keywords in articles are different and their contents are comprised with different keywords. And the Positive-Negative classification showed the possibility of classifying newspapers' tones of arguments compared to others. These results indicate that the approach in this study is promising to be extended as a new tool to identify the different tones of arguments of newspapers.
An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis
Choongseok Lee, Suk Joo Lee, and Byounggu Choi
Vol. 18, No. 3, Page: 79 ~ 96
Keywords : Patent Analysis, Time-Series Data Mining, Artificial Neural Networks, Decision Support Systems, Decision Support Systems
Abstract
As the pace of competition dramatically accelerates and the complexity of change grows, a variety of research have been conducted to improve firms' short-term performance and to enhance firms' long-term survival. In particular, researchers and practitioners have paid their attention to identify promising technologies that lead competitive advantage to a firm. Discovery of promising technology depends on how a firm evaluates the value of technologies, thus many evaluating methods have been proposed. Experts' opinion based approaches have been widely accepted to predict the value of technologies. Whereas this approach provides in-depth analysis and ensures validity of analysis results, it is usually cost-and time-ineffective and is limited to qualitative evaluation. Considerable studies attempt to forecast the value of technology by using patent information to overcome the limitation of experts' opinion based approach. Patent based technology evaluation has served as a valuable assessment approach of the technological forecasting because it contains a full and practical description of technology with uniform structure. Furthermore, it provides information that is not divulged in any other sources. Although patent information based approach has contributed to our understanding of prediction of promising technologies, it has some limitations because prediction has been made based on the past patent information, and the interpretations of patent analyses are not consistent. In order to fill this gap, this study proposes a technology forecasting methodology by integrating patent information approach and artificial intelligence method. The methodology consists of three modules : evaluation of technologies promising, implementation of technologies value prediction model, and recommendation of promising technologies. In the first module, technologies promising is evaluated from three different and complementary dimensions; impact, fusion, and diffusion perspectives. The impact of technologies refers to their influence on future technologies development and improvement, and is also clearly associated with their monetary value. The fusion of technologies denotes the extent to which a technology fuses different technologies, and represents the breadth of search underlying the technology. The fusion of technologies can be calculated based on technology or patent, thus this study measures two types of fusion index; fusion index per technology and fusion index per patent. Finally, the diffusion of technologies denotes their degree of applicability across scientific and technological fields. In the same vein, diffusion index per technology and diffusion index per patent are considered respectively. In the second module, technologies value prediction model is implemented using artificial intelligence method. This studies use the values of five indexes (i.e., impact index, fusion index per technology, fusion index per patent, diffusion index per technology and diffusion index per patent) at different time (e.g., t-n, t-n-1, t-n-2, ${\cdots}$ 수식 이미지) as input variables. The out variables are values of five indexes at time t, which is used for learning. The learning method adopted in this study is backpropagation algorithm. In the third module, this study recommends final promising technologies based on analytic hierarchy process. AHP provides relative importance of each index, leading to final promising index for technology. Applicability of the proposed methodology is tested by using U.S. patents in international patent class G06F (i.e., electronic digital data processing) from 2000 to 2008. The results show that mean absolute error value for prediction produced by the proposed methodology is lower than the value produced by multiple regression analysis in cases of fusion indexes. However, mean absolute error value of the proposed methodology is slightly higher than the value of multiple regression analysis. These unexpected results may be explained, in part, by small number of patents. Since this study only uses patent data in class G06F, number of sample patent data is relatively small, leading to incomplete learning to satisfy complex artificial intelligence structure. In addition, fusion index per technology and impact index are found to be important criteria to predict promising technology. This study attempts to extend the existing knowledge by proposing a new methodology for prediction technology value by integrating patent information analysis and artificial intelligence network. It helps managers who want to technology develop planning and policy maker who want to implement technology policy by providing quantitative prediction methodology. In addition, this study could help other researchers by proving a deeper understanding of the complex technological forecasting field.
A User Profile-based Filtering Method for Information Search in Smart TV Environment
Vi-Sal Sean, Kyeong-Jin Oh, and Geun-Sik Jo
Vol. 18, No. 3, Page: 97 ~ 117
Keywords : Filtering Method, User Profile, Social Network, Linked Data, Linked Data
Abstract
Nowadays, Internet users tend to do a variety of actions at the same time such as web browsing, social networking and multimedia consumption. While watching a video, once a user is interested in any product, the user has to do information searches to get to know more about the product. With a conventional approach, user has to search it separately with search engines like Bing or Google, which might be inconvenient and time-consuming. For this reason, a video annotation platform has been developed in order to provide users more convenient and more interactive ways with video content. In the future of smart TV environment, users can follow annotated information, for example, a link to a vendor to buy the product of interest. It is even better to enable users to search for information by directly discussing with friends. Users can effectively get useful and relevant information about the product from friends who share common interests or might have experienced it before, which is more reliable than the results from search engines. Social networking services provide an appropriate environment for people to share products so that they can show new things to their friends and to share their personal experiences on any specific product. Meanwhile, they can also absorb the most relevant information about the product that they are interested in by either comments or discussion amongst friends. However, within a very huge graph of friends, determining the most appropriate persons to ask for information about a specific product has still a limitation within the existing conventional approach. Once users want to share or discuss a product, they simply share it to all friends as new feeds. This means a newly posted article is blindly spread to all friends without considering their background interests or knowledge. In this way, the number of responses back will be huge. Users cannot easily absorb the relevant and useful responses from friends, since they are from various fields of interest and knowledge. In order to overcome this limitation, we propose a method to filter a user's friends for information search, which leverages semantic video annotation and social networking services. Our method filters and brings out who can give user useful information about a specific product. By examining the existing Facebook information regarding users and their social graph, we construct a user profile of product interest. With user's permission and authentication, user's particular activities are enriched with the domain-specific ontology such as GoodRelations and BestBuy Data sources. Besides, we assume that the object in the video is already annotated using Linked Data. Thus, the detail information of the product that user would like to ask for more information is retrieved via product URI. Our system calculates the similarities among them in order to identify the most suitable friends for seeking information about the mentioned product. The system filters a user's friends according to their score which tells the order of whom can highly likely give the user useful information about a specific product of interest. We have conducted an experiment with a group of respondents in order to verify and evaluate our system. First, the user profile accuracy evaluation is conducted to demonstrate how much our system constructed user profile of product interest represents user's interest correctly. Then, the evaluation on filtering method is made by inspecting the ranked results with human judgment. The results show that our method works effectively and efficiently in filtering. Our system fulfills user needs by supporting user to select appropriate friends for seeking useful information about a specific product that user is curious about. As a result, it helps to influence and convince user in purchase decisions.
Improving Neighborhood-based CF Systems : Towards More Accurate and Diverse Recommendations
YoungOk Kwon
Vol. 18, No. 3, Page: 119 ~ 135
Keywords : Recommendation, Collaborative Filtering, Neighborhood-Based, Diversity, Diversity, Similarity
Abstract
Among various recommendation techniques, neighborhood-based Collaborative Filtering (CF) techniques have been one of the most widely used and best performing techniques in literature and industry. This paper proposes new approaches that can enhance the neighborhood-based CF techniques by identifying a few best neighbors (the most similar users to a target user) more accurately with more information about neighbors. The proposed approaches put more weights to the users who have more items co-rated by the target user in similarity computation, which can help to better understand the preferences of neighbors and eventually improve the recommendation quality. Experiments using movie rating data empirically demonstrate simultaneous improvements in both recommendation accuracy and diversity. In addition to the typical single rating setting, the proposed approaches can be applied to the multi-criteria rating setting where users can provide more information about their preferences, resulting in further improvements in recommendation quality. We finally introduce a single metric that measures the balance between accuracy and diversity and discuss potential avenues for future work.
Term Mapping Methodology between Everyday Words and Legal Terms for Law Information Search System
Ji Hyun Kim, Jong-Seo Lee, Myungjin Lee, Wooju Kim, and June Seok Hong
Vol. 18, No. 3, Page: 137 ~ 152
Keywords : Legal Information Search System, Tag Clustering, Legal Ontology
Abstract
In the generation of Web 2.0, as many users start to make lots of web contents called user created contents by themselves, the World Wide Web is overflowing by countless information. Therefore, it becomes the key to find out meaningful information among lots of resources. Nowadays, the information retrieval is the most important thing throughout the whole field and several types of search services are developed and widely used in various fields to retrieve information that user really wants. Especially, the legal information search is one of the indispensable services in order to provide people with their convenience through searching the law necessary to their present situation as a channel getting knowledge about it. The Office of Legislation in Korea provides the Korean Law Information portal service to search the law information such as legislation, administrative rule, and judicial precedent from 2009, so people can conveniently find information related to the law. However, this service has limitation because the recent technology for search engine basically returns documents depending on whether the query is included in it or not as a search result. Therefore, it is really difficult to retrieve information related the law for general users who are not familiar with legal terms in the search engine using simple matching of keywords in spite of those kinds of efforts of the Office of Legislation in Korea, because there is a huge divergence between everyday words and legal terms which are especially from Chinese words. Generally, people try to access the law information using everyday words, so they have a difficulty to get the result that they exactly want. In this paper, we propose a term mapping methodology between everyday words and legal terms for general users who don't have sufficient background about legal terms, and we develop a search service that can provide the search results of law information from everyday words. This will be able to search the law information accurately without the knowledge of legal terminology. In other words, our research goal is to make a law information search system that general users are able to retrieval the law information with everyday words. First, this paper takes advantage of tags of internet blogs using the concept for collective intelligence to find out the term mapping relationship between everyday words and legal terms. In order to achieve our goal, we collect tags related to an everyday word from web blog posts. Generally, people add a non-hierarchical keyword or term like a synonym, especially called tag, in order to describe, classify, and manage their posts when they make any post in the internet blog. Second, the collected tags are clustered through the cluster analysis method, K-means. Then, we find a mapping relationship between an everyday word and a legal term using our estimation measure to select the fittest one that can match with an everyday word. Selected legal terms are given the definite relationship, and the relations between everyday words and legal terms are described using SKOS that is an ontology to describe the knowledge related to thesauri, classification schemes, taxonomies, and subject-heading. Thus, based on proposed mapping and searching methodologies, our legal information search system finds out a legal term mapped with user query and retrieves law information using a matched legal term, if users try to retrieve law information using an everyday word. Therefore, from our research, users can get exact results even if they do not have the knowledge related to legal terms. As a result of our research, we expect that general users who don't have professional legal background can conveniently and efficiently retrieve the legal information using everyday words.
Analyzing the User Intention of Booth Recommender System in Smart Exhibition Environment
Jae Ho Choi, Jun-Yong Xiang, Hyun Sil Moon, Il Young Choi, and Jae Kyeong Kim
Vol. 18, No. 3, Page: 153 ~ 169
Keywords : Exhibition Booth Recommendation, Recommendation System, Smart Exhibition
Abstract
Exhibitions have played a key role of effective marketing activity which directly informs services and products to current and potential customers. Through participating in exhibitions, exhibitors have got the opportunity to make face-to-face contact so that they can secure the market share and improve their corporate images. According to this economic importance of exhibitions, show organizers try to adopt a new IT technology for improving their performance, and researchers have also studied services which can improve the satisfaction of visitors through analyzing visit patterns of visitors. Especially, as smart technologies make them monitor activities of visitors in real-time, they have considered booth recommender systems which infer preference of visitors and recommender proper service to them like on-line environment. However, while there are many studies which can improve their performance in the side of new technological development, they have not considered the choice factor of visitors for booth recommender systems. That is, studies for factors which can influence the development direction and effective diffusion of these systems are insufficient. Most of prior studies for the acceptance of new technologies and the continuous intention of use have adopted Technology Acceptance Model (TAM) and Extended Technology Acceptance Model (ETAM). Booth recommender systems may not be new technology because they are similar with commercial recommender systems such as book recommender systems, in the smart exhibition environment, they can be considered new technology. However, for considering the smart exhibition environment beyond TAM, measurements for the intention of reuse should focus on how booth recommender systems can provide correct information to visitors. In this study, through literature reviews, we draw factors which can influence the satisfaction and reuse intention of visitors for booth recommender systems, and design a model to forecast adaptation of visitors for booth recommendation in the exhibition environment. For these purposes, we conduct a survey for visitors who attended DMC Culture Open in November 2011 and experienced booth recommender systems using own smart phone, and examine hypothesis by regression analysis. As a result, factors which can influence the satisfaction of visitors for booth recommender systems are the effectiveness, perceived ease of use, argument quality, serendipity, and so on. Moreover, the satisfaction for booth recommender systems has a positive relationship with the development of reuse intention. For these results, we have some insights for booth recommender systems in the smart exhibition environment. First, this study gives shape to important factors which are considered when they establish strategies which induce visitors to consistently use booth recommender systems. Recently, although show organizers try to improve their performances using new IT technologies, their visitors have not felt the satisfaction from these efforts. At this point, this study can help them to provide services which can improve the satisfaction of visitors and make them last relationship with visitors. On the other hands, this study suggests that they managers along the using time of booth recommender systems. For example, in the early stage of the adoption, they should focus on the argument quality, perceived ease of use, and serendipity, so that improve the acceptance of booth recommender systems. After these stages, they should bridge the differences between expectation and perception for booth recommender systems, and lead continuous uses of visitors. However, this study has some limitations. We only use four factors which can influence the satisfaction of visitors. Therefore, we should development our model to consider important additional factors. And the exhibition in our experiments has small number of booths so that visitors may not need to booth recommender systems. In the future study, we will conduct experiments in the exhibition environment which has a larger scale.
Case Analysis of the Promotion Methodologies in the Smart Exhibition Environment
Hyun Sil Moon, Nam Hee Kim, and Jae Kyeong Kim
Vol. 18, No. 3, Page: 171 ~ 183
Keywords : STP Strategy, Cluster Analysis, Promotion
Abstract
In the development of technologies, the exhibition industry has received much attention from governments and companies as an important way of marketing activities. Also, the exhibitors have considered the exhibition as new channels of marketing activities. However, the growing size of exhibitions for net square feet and the number of visitors naturally creates the competitive environment for them. Therefore, to make use of the effective marketing tools in these environments, they have planned and implemented many promotion technics. Especially, through smart environment which makes them provide real-time information for visitors, they can implement various kinds of promotion. However, promotions ignoring visitors' various needs and preferences can lose the original purposes and functions of them. That is, as indiscriminate promotions make visitors feel like spam, they can't achieve their purposes. Therefore, they need an approach using STP strategy which segments visitors through right evidences (Segmentation), selects the target visitors (Targeting), and give proper services to them (Positioning). For using STP Strategy in the smart exhibition environment, we consider these characteristics of it. First, an exhibition is defined as market events of a specific duration, which are held at intervals. According to this, exhibitors who plan some promotions should different events and promotions in each exhibition. Therefore, when they adopt traditional STP strategies, a system can provide services using insufficient information and of existing visitors, and should guarantee the performance of it. Second, to segment automatically, cluster analysis which is generally used as data mining technology can be adopted. In the smart exhibition environment, information of visitors can be acquired in real-time. At the same time, services using this information should be also provided in real-time. However, many clustering algorithms have scalability problem which they hardly work on a large database and require for domain knowledge to determine input parameters. Therefore, through selecting a suitable methodology and fitting, it should provide real-time services. Finally, it is needed to make use of data in the smart exhibition environment. As there are useful data such as booth visit records and participation records for events, the STP strategy for the smart exhibition is based on not only demographical segmentation but also behavioral segmentation. Therefore, in this study, we analyze a case of the promotion methodology which exhibitors can provide a differentiated service to segmented visitors in the smart exhibition environment. First, considering characteristics of the smart exhibition environment, we draw evidences of segmentation and fit the clustering methodology for providing real-time services. There are many studies for classify visitors, but we adopt a segmentation methodology based on visitors' behavioral traits. Through the direct observation, Veron and Levasseur classify visitors into four groups to liken visitors' traits to animals (Butterfly, fish, grasshopper, and ant). Especially, because variables of their classification like the number of visits and the average time of a visit can estimate in the smart exhibition environment, it can provide theoretical and practical background for our system. Next, we construct a pilot system which automatically selects suitable visitors along the objectives of promotions and instantly provide promotion messages to them. That is, based on the segmentation of our methodology, our system automatically selects suitable visitors along the characteristics of promotions. We adopt this system to real exhibition environment, and analyze data from results of adaptation. As a result, as we classify visitors into four types through their behavioral pattern in the exhibition, we provide some insights for researchers who build the smart exhibition environment and can gain promotion strategies fitting each cluster. First, visitors of ANT type show high response rate for promotion messages except experience promotion. So they are fascinated by actual profits in exhibition area, and dislike promotions requiring a long time. Contrastively, visitors of GRASSHOPPER type show high response rate only for experience promotion. Second, visitors of FISH type appear favors to coupon and contents promotions. That is, although they don't look in detail, they prefer to obtain further information such as brochure. Especially, exhibitors that want to give much information for limited time should give attention to visitors of this type. Consequently, these promotion strategies are expected to give exhibitors some insights when they plan and organize their activities, and grow the performance of them.
1



Warning: include(/home/hosting_users/ev_jiisonline/www/admin/archive/advancedSearch.php) [function.include]: failed to open stream: No such file or directory in /home/hosting_users/ev_jiisonline/www/archive/subList.php on line 113

Warning: include() [function.include]: Failed opening '/home/hosting_users/ev_jiisonline/www/admin/archive/advancedSearch.php' for inclusion (include_path='.:/usr/local/php/lib/php') in /home/hosting_users/ev_jiisonline/www/archive/subList.php on line 113