DIGITAL LIBRARY ARCHIVE
HOME > DIGITAL LIBRARY ARCHIVE
Journal of Intelligence and Information Systems,
Vol. 25, No. 3, September 2019
Predicting stock movements based on financial news with systematic group identification
NohYoon Seong, and Kihwan Nam
Vol. 25, No. 3, Page: 1 ~ 17
Keywords : Online News, Stock prediction, Random matrix theory, hierarchical clustering
Abstract
Because stock price forecasting is an important issue both academically and practically, research in stock price prediction has been actively conducted. The stock price forecasting research is classified into using structured data and using unstructured data. With structured data such as historical stock price and financial statements, past studies usually used technical analysis approach and fundamental analysis. In the big data era, the amount of information has rapidly increased, and the artificial intelligence methodology that can find meaning by quantifying string information, which is an unstructured data that takes up a large amount of information, has developed rapidly. With these developments, many attempts with unstructured data are being made to predict stock prices through online news by applying text mining to stock price forecasts.
The stock price prediction methodology adopted in many papers is to forecast stock prices with the news of the target companies to be forecasted. However, according to previous research, not only news of a target company affects its stock price, but news of companies that are related to the company can also affect the stock price. However, finding a highly relevant company is not easy because of the market-wide impact and random signs. Thus, existing studies have found highly relevant companies based primarily on pre-determined international industry classification standards. However, according to recent research, global industry classification standard has different homogeneity within the sectors, and it leads to a limitation that forecasting stock prices by taking them all together without considering only relevant companies can adversely affect predictive performance.
To overcome the limitation, we first used random matrix theory with text mining for stock prediction.
Wherever the dimension of data is large, the classical limit theorems are no longer suitable, because the statistical efficiency will be reduced. Therefore, a simple correlation analysis in the financial market does not mean the true correlation. To solve the issue, we adopt random matrix theory, which is mainly used in econophysics, to remove market-wide effects and random signals and find a true correlation between companies. With the true correlation, we perform cluster analysis to find relevant companies.
Also, based on the clustering analysis, we used multiple kernel learning algorithm, which is an ensemble of support vector machine to incorporate the effects of the target firm and its relevant firms simultaneously. Each kernel was assigned to predict stock prices with features of financial news of the target firm and its relevant firms.
The results of this study are as follows. The results of this paper are as follows. (1) Following the existing research flow, we confirmed that it is an effective way to forecast stock prices using news from relevant companies. (2) When looking for a relevant company, looking for it in the wrong way can lower AI prediction performance. (3) The proposed approach with random matrix theory shows better performance than previous studies if cluster analysis is performed based on the true correlation by removing market-wide effects and random signals.
The contribution of this study is as follows. First, this study shows that random matrix theory, which is used mainly in economic physics, can be combined with artificial intelligence to produce good methodologies. This suggests that it is important not only to develop AI algorithms but also to adopt physics theory. This extends the existing research that presented the methodology by integrating artificial intelligence with complex system theory through transfer entropy. Second, this study stressed that finding the right companies in the stock market is an important issue. This suggests that it is not only important to study artificial intelligence algorithms, but how to theoretically adjust the input values. Third, we confirmed that firms classified as Global Industrial Classification Standard (GICS) might have low relevance and suggested it is necessary to theoretically define the relevance rather than simply finding it in the GICS.
Multi-Vector Document Embedding Using Semantic Decomposition of Complex Documents
Jongin Park, and Namgyu Kim
Vol. 25, No. 3, Page: 19 ~ 41
Keywords : Document Embedding, Multi-Vector Document Embedding, Word Embedding, Text Mining
Abstract
According to the rapidly increasing demand for text data analysis, research and investment in text mining are being actively conducted not only in academia but also in various industries. Text mining is generally conducted in two steps. In the first step, the text of the collected document is tokenized and structured to convert the original document into a computer-readable form. In the second step, tasks such as document classification, clustering, and topic modeling are conducted according to the purpose of analysis. Until recently, text mining-related studies have been focused on the application of the second steps, such as document classification, clustering, and topic modeling. However, with the discovery that the text structuring process substantially influences the quality of the analysis results, various embedding methods have actively been studied to improve the quality of analysis results by preserving the meaning of words and documents in the process of representing text data as vectors.
Unlike structured data, which can be directly applied to a variety of operations and traditional analysis techniques, Unstructured text should be preceded by a structuring task that transforms the original document into a form that the computer can understand before analysis. It is called "Embedding" that arbitrary objects are mapped to a specific dimension space while maintaining algebraic properties for structuring the text data. Recently, attempts have been made to embed not only words but also sentences, paragraphs, and entire documents in various aspects. Particularly, with the demand for analysis of document embedding increases rapidly, many algorithms have been developed to support it. Among them, doc2Vec which extends word2Vec and embeds each document into one vector is most widely used.
However, the traditional document embedding method represented by doc2Vec generates a vector for each document using the whole corpus included in the document. This causes a limit that the document vector is affected by not only core words but also miscellaneous words. Additionally, the traditional document embedding schemes usually map each document into a single corresponding vector. Therefore, it is difficult to represent a complex document with multiple subjects into a single vector accurately using the traditional approach. In this paper, we propose a new multi-vector document embedding method to overcome these limitations of the traditional document embedding methods.
This study targets documents that explicitly separate body content and keywords. In the case of a document without keywords, this method can be applied after extract keywords through various analysis methods. However, since this is not the core subject of the proposed method, we introduce the process of applying the proposed method to documents that predefine keywords in the text.
The proposed method consists of (1) Parsing, (2) Word Embedding, (3) Keyword Vector Extraction, (4) Keyword Clustering, and (5) Multiple-Vector Generation. The specific process is as follows. all text in a document is tokenized and each token is represented as a vector having N-dimensional real value through word embedding. After that, to overcome the limitations of the traditional document embedding method that is affected by not only the core word but also the miscellaneous words, vectors corresponding to the keywords of each document are extracted and make up sets of keyword vector for each document.
Next, clustering is conducted on a set of keywords for each document to identify multiple subjects included in the document. Finally, a Multi-vector is generated from vectors of keywords constituting each cluster.
The experiments for 3.147 academic papers revealed that the single vector-based traditional approach cannot properly map complex documents because of interference among subjects in each vector. With the proposed multi-vector based method, we ascertained that complex documents can be vectorized more accurately by eliminating the interference among subjects.
Anomaly Detection for User Action with Generative Adversarial Networks
Namwoong Choi, and Wooju Kim
Vol. 25, No. 3, Page: 43 ~ 62
Keywords : Autoencoder, Anomaly Score, Feature matching, Generative Adversarial Nets-Anomaly Detection, Optimizing latent variable
Abstract
At one time, the anomaly detection sector dominated the method of determining whether there was an abnormality based on the statistics derived from specific data. This methodology was possible because the dimension of the data was simple in the past, so the classical statistical method could work effectively.
However, as the characteristics of data have changed complexly in the era of big data, it has become more difficult to accurately analyze and predict the data that occurs throughout the industry in the conventional way. Therefore, SVM and Decision Tree based supervised learning algorithms were used.
However, there is peculiarity that supervised learning based model can only accurately predict the test data, when the number of classes is equal to the number of normal classes and most of the data generated in the industry has unbalanced data class. Therefore, the predicted results are not always valid when supervised learning model is applied. In order to overcome these drawbacks, many studies now use the unsupervised learning-based model that is not influenced by class distribution, such as autoencoder or generative adversarial networks.
In this paper, we propose a method to detect anomalies using generative adversarial networks.
AnoGAN, introduced in the study of Thomas et al (2017), is a classification model that performs abnormal detection of medical images. It was composed of a Convolution Neural Net and was used in the field of detection. On the other hand, sequencing data abnormality detection using generative adversarial network is a lack of research papers compared to image data. Of course, in Li et al (2018), a study by Li et al (LSTM), a type of recurrent neural network, has proposed a model to classify the abnormities of numerical sequence data, but it has not been used for categorical sequence data, as well as feature matching method applied by salans et al.(2016). So it suggests that there are a number of studies to be tried on in the ideal classification of sequence data through a generative adversarial Network. In order to learn the sequence data, the structure of the generative adversarial networks is composed of LSTM, and the 2 stacked-LSTM of the generator is composed of 32-dim hidden unit layers and 64-dim hidden unit layers. The LSTM of the discriminator consists of 64-dim hidden unit layer were used.
In the process of deriving abnormal scores from existing paper of Anomaly Detection for Sequence data, entropy values of probability of actual data are used in the process of deriving abnormal scores. but in this paper, as mentioned earlier, abnormal scores have been derived by using feature matching techniques. In addition, the process of optimizing latent variables was designed with LSTM to improve model performance. The modified form of generative adversarial model was more accurate in all experiments than the autoencoder in terms of precision and was approximately 7% higher in accuracy.
In terms of Robustness, Generative adversarial networks also performed better than autoencoder.
Because generative adversarial networks can learn data distribution from real categorical sequence data, Unaffected by a single normal data. But autoencoder is not. Result of Robustness test showed that he accuracy of the autocoder was 92%, the accuracy of the hostile neural network was 96%, and in terms of sensitivity, the autocoder was 40% and the hostile neural network was 51%.
In this paper, experiments have also been conducted to show how much performance changes due to differences in the optimization structure of potential variables. As a result, the level of 1% was improved in terms of sensitivity. These results suggest that it presented a new perspective on optimizing latent variable that were relatively insignificant.
An Investigation on the Periodical Transition of News related to North Korea using Text Mining
Chul-Soo Park
Vol. 25, No. 3, Page: 63 ~ 88
Keywords : Text mining, North Korea, News, Text Analysis, Newspaper
Abstract
The goal of this paper is to investigate changes in North Korea’s domestic and foreign policies through automated text analysis over North Korea represented in South Korean mass media. Based on that data, we then analyze the status of text mining research, using a text mining technique to find the topics, methods, and trends of text mining research. We also investigate the characteristics and method of analysis of the text mining techniques, confirmed by analysis of the data.
In this study, R program was used to apply the text mining technique. R program is free software for statistical computing and graphics. Also, Text mining methods allow to highlight the most frequently used keywords in a paragraph of texts. One can create a word cloud, also referred as text cloud or tag cloud. This study proposes a procedure to find meaningful tendencies based on a combination of word cloud, and co-occurrence networks.
This study aims to more objectively explore the images of North Korea represented in South Korean newspapers by quantitatively reviewing the patterns of language use related to North Korea from 2016. 11.
1 to 2019. 5. 23 newspaper big data. In this study, we divided into three periods considering recent inter - Korean relations. Before January 1, 2018, it was set as a Before Phase of Peace Building. From January 1, 2018 to February 24, 2019, we have set up a Peace Building Phase. The New Year’s message of Kim Jong-un and the Olympics of Pyeong Chang formed an atmosphere of peace on the Korean peninsula. After the Hanoi Pease summit, the third period was the silence of the relationship between North Korea and the United States. Therefore, it was called Depression Phase of Peace Building. This study analyzes news articles related to North Korea of the Korea Press Foundation database(www.bigkinds.or.kr) through text mining, to investigate characteristics of the Kim Jong-un regime’s South Korea policy and unification discourse.
The main results of this study show that trends in the North Korean national policy agenda can be discovered based on clustering and visualization algorithms. In particular, it examines the changes in the international circumstances, domestic conflicts, the living conditions of North Korea, the South’s Aid project for the North, the conflicts of the two Koreas, North Korean nuclear issue, and the North Korean refugee problem through the co-occurrence word analysis. It also offers an analysis of South Korean mentality toward North Korea in terms of the semantic prosody.
In the Before Phase of Peace Building, the results of the analysis showed the order of 'Missiles’, 'North Korea Nuclear’, 'Diplomacy’, 'Unification’, and ' South–North Korean’. The results of Peace Building Phase are extracted the order of 'Panmunjom', 'Unification', 'North Korea Nuclear', 'Diplomacy', and 'Military'. The results of Depression Phase of Peace Building derived the order of ‘North Korea Nuclear’, ‘North and South Korea’, ‘Missile’, ‘State Department’, and ‘International’. There are 16 words adopted in all three periods. The order is as follows: ‘missile’, ‘North Korea Nuclear’, ’Diplomacy’, ‘Unification’, ‘North and South Korea’, ‘Military’, ‘Kaesong Industrial Complex’, ‘Defense’, ‘Sanctions’, ‘Denuclearization’, ‘Peace’, ‘Exchange and Cooperation’, and ‘South Korea’.
We expect that the results of this study will contribute to analyze the trends of news content of North Korea associated with North Korea's provocations. And future research on North Korean trends will be conducted based on the results of this study. We will continue to study the model development for North Korea risk measurement that can anticipate and respond to North Korea's behavior in advance. We expect that the text mining analysis method and the scientific data analysis technique will be applied to North Korea and unification research field. Through these academic studies, I hope to see a lot of studies that make important contributions to the nation.
A study on detective story authors’ style differentiation and style structure based on Text Mining
Seok Hyung Moon, and Juyoung Kang
Vol. 25, No. 3, Page: 89 ~ 115
Keywords : Sentiment Analysis, Topic Modeling, Network Analysis, Grammar, Writing Style
Abstract
This study was conducted to present the stylistic differences between Arthur Conan Doyle and Agatha Christie, famous as writers of classical mystery novels, through data analysis, and further to present the analytical methodology of the study of style based on text mining. The reason why we chose mystery novels for our research is because the unique devices that exist in classical mystery novels have strong stylistic characteristics, and furthermore, by choosing Arthur Conan Doyle and Agatha Christie, who are also famous to the general reader, as subjects of analysis, so that people who are unfamiliar with the research can be familiar with them.
The primary objective of this study is to identify how the differences exist within the text and to interpret the effects of these differences on the reader. Accordingly, in addition to events and characters, which are key elements of mystery novels, the writer's grammatical style of writing was defined in style and attempted to analyze it. Two series and four books were selected by each writer, and the text was divided into sentences to secure data. After measuring and granting the emotional score according to each sentence, the emotions of the page progress were visualized as a graph, and the trend of the event progress in the novel was identified under eight themes by applying Topic modeling according to the page. By organizing co-occurrence matrices and performing network analysis, we were able to visually see changes in relationships between people as events progressed. In addition, the entire sentence was divided into a grammatical system based on a total of six types of writing style to identify differences between writers and between works. This enabled us to identify not only the general grammatical writing style of the author, but also the inherent stylistic characteristics in their unconsciousness, and to interpret the effects of these characteristics on the reader. This series of research processes can help to understand the context of the entire text based on a defined understanding of the style, and furthermore, by integrating previously individually conducted stylistic studies. This prior understanding can also contribute to discovering and clarifying the existence of text in unstructured data, including online text. This could help enable more accurate recognition of emotions and delivery of commands on an interactive artificial intelligence platform that currently converts voice into natural language.
In the face of increasing attempts to analyze online texts, including New Media, in many ways and discover social phenomena and managerial values, it is expected to contribute to more meaningful online text analysis and semantic interpretation through the links to these studies. However, the fact that the analysis data used in this study are two or four books by author can be considered as a limitation in that the data analysis was not attempted in sufficient quantities. The application of the writing characteristics applied to the Korean text even though it was an English text also could be limitation. The more diverse stylistic characteristics were limited to six, and the less likely interpretation was also considered as a limitation. In addition, it is also regrettable that the research was conducted by analyzing classical mystery novels rather than text that is commonly used today, and that various classical mystery novel writers were not compared. Subsequent research will attempt to increase the diversity of interpretations by taking into account a wider variety of grammatical systems and stylistic structures and will also be applied to the current frequently used online text analysis to assess the potential for interpretation. It is expected that this will enable the interpretation and definition of the specific structure of the style and that various usability can be considered.
Implementation Strategy for the Elderly Care Solution Based on Usage Log Analysis: Focusing on the Case of Hyodol Product
Junsik Lee, In-Jin Yoo, and Do-Hyung Park
Vol. 25, No. 3, Page: 117 ~ 140
Keywords : Elderly, Elderly Behavior, Smart Toy, User Behavior Log, Profiling
Abstract
As the aging phenomenon accelerates and various social problems related to the elderly of the vulnerable are raised, the need for effective elderly care solutions to protect the health and safety of the elderly generation is growing. Recently, more and more people are using Smart Toys equipped with ICT technology for care for elderly. In particular, log data collected through smart toys is highly valuable to be used as a quantitative and objective indicator in areas such as policy-making and service planning.
However, research related to smart toys is limited, such as the development of smart toys and the validation of smart toy effectiveness. In other words, there is a dearth of research to derive insights based on log data collected through smart toys and to use them for decision making. This study will analyze log data collected from smart toy and derive effective insights to improve the quality of life for elderly users.
Specifically, the user profiling-based analysis and elicitation of a change in quality of life mechanism based on behavior were performed. First, in the user profiling analysis, two important dimensions of classifying the type of elderly group from five factors of elderly user's living management were derived: ‘Routine Activities’ and ‘Work-out Activities’. Based on the dimensions derived, a hierarchical cluster analysis and K-Means clustering were performed to classify the entire elderly user into three groups. Through a profiling analysis, the demographic characteristics of each group of elderlies and the behavior of using smart toy were identified. Second, stepwise regression was performed in eliciting the mechanism of change in quality of life. The effects of interaction, content usage, and indoor activity have been identified on the improvement of depression and lifestyle for the elderly. In addition, it identified the role of user performance evaluation and satisfaction with smart toy as a parameter that mediated the relationship between usage behavior and quality of life change. Specific mechanisms are as follows. First, the interaction between smart toy and elderly was found to have an effect of improving the depression by mediating attitudes to smart toy. The ‘Satisfaction toward Smart Toy,’ a variable that affects the improvement of the elderly's depression, changes how users evaluate smart toy performance. At this time, it has been identified that it is the interaction with smart toy that has a positive effect on smart toy These results can be interpreted as an elderly with a desire to meet emotional stability interact actively with smart toy, and a positive assessment of smart toy, greatly appreciating the effectiveness of smart toy. Second, the content usage has been confirmed to have a direct effect on improving lifestyle without going through other variables. Elderly who use a lot of the content provided by smart toy have improved their lifestyle.
However, this effect has occurred regardless of the attitude the user has toward smart toy. Third, log data show that a high degree of indoor activity improves both the lifestyle and depression of the elderly. The more indoor activity, the better the lifestyle of the elderly, and these effects occur regardless of the user's attitude toward smart toy. In addition, elderly with a high degree of indoor activity are satisfied with smart toys, which cause improvement in the elderly's depression. However, it can be interpreted that elderly who prefer outdoor activities than indoor activities, or those who are less active due to health problems, are hard to satisfied with smart toys, and are not able to get the effects of improving depression. In summary, based on the activities of the elderly, three groups of elderly were identified and the important characteristics of each type were identified. In addition, this study sought to identify the mechanism by which the behavior of the elderly on smart toy affects the lives of the actual elderly, and to derive user needs and insights.
The Role of Clients in Software Projects with Agile Methods
Vladimir Kim, Wooje Cho, and Yoonhyuk Jung
Vol. 25, No. 3, Page: 141 ~ 160
Keywords : agile methodology, project success, project management, ordered logit regression, survey
Abstract
Agile methodologies in software development, including the development of artificial intelligence software, have been widespread over the past several years. In spite of the popularity of agile methodologies in practice, there is a lack of empirical evidence to identify determinants of success of software projects in which agile methods are used. To understand the role of clients in software project where agile methods are used, we examine the effect of client-side factors, including lack of user involvement, unrealistic client expectations, and constant changes of requirements on project success from practitioners’ perspective. Survey methods are used in this study. Data were collected by means of online survey to IT professionals who have experience with software development methodologies, and ordered logit regression is used to analyze the survey data. Results of our study imply the following managerial findings. First, user involvement is critical to project success to take advantage of agile methods. Second, it is interesting that, with an agile method, constant changes of client’s requirements is not a negative factor but a positive factor of project success. Third, unrealistic client expectations do negatively affect project success even with agile methods.
Query-based Answer Extraction using Korean Dependency Parsing
Dokyoung Lee, Mintae Kim, and Kim Wooju
Vol. 25, No. 3, Page: 161 ~ 177
Keywords : Question Answering System, Answer Extraction, Dependency Parsing, Graph Embedding, Bi-directional LSTM-CRF
Abstract
In this paper, we study the performance improvement of the answer extraction in Question-Answering system by using sentence dependency parsing result.
The Question-Answering (QA) system consists of query analysis, which is a method of analyzing the user's query, and answer extraction, which is a method to extract appropriate answers in the document.
And various studies have been conducted on two methods. In order to improve the performance of answer extraction, it is necessary to accurately reflect the grammatical information of sentences. In Korean, because word order structure is free and omission of sentence components is frequent, dependency parsing is a good way to analyze Korean syntax. Therefore, in this study, we improved the performance of the answer extraction by adding the features generated by dependency parsing analysis to the inputs of the answer extraction model (Bidirectional LSTM-CRF).
The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. In this study, we compared the performance of the answer extraction model when inputting basic word features generated without the dependency parsing and the performance of the model when inputting the addition of the Eojeol tag feature and dependency graph embedding feature.
Since dependency parsing is performed on a basic unit of an Eojeol, which is a component of sentences separated by a space, the tag information of the Eojeol can be obtained as a result of the dependency parsing. The Eojeol tag feature means the tag information of the Eojeol.
The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. From the dependency parsing result, a graph is generated from the Eojeol to the node, the dependency between the Eojeol to the edge, and the Eojeol tag to the node label. In this process, an undirected graph is generated or a directed graph is generated according to whether or not the dependency relation direction is considered.
To obtain the embedding of the graph, we used Graph2Vec, which is a method of finding the embedding of the graph by the subgraphs constituting a graph. We can specify the maximum path length between nodes in the process of finding subgraphs of a graph. If the maximum path length between nodes is 1, graph embedding is generated only by direct dependency between Eojeol, and graph embedding is generated including indirect dependencies as the maximum path length between nodes becomes larger.
In the experiment, the maximum path length between nodes is adjusted differently from 1 to 3 depending on whether direction of dependency is considered or not, and the performance of answer extraction is measured. Experimental results show that both Eojeol tag feature and dependency graph embedding feature improve the performance of answer extraction. In particular, considering the direction of the dependency relation and extracting the dependency graph generated with the maximum path length of 1 in the subgraph extraction process in Graph2Vec as the input of the model, the highest answer extraction performance was shown. As a result of these experiments, we concluded that it is better to take into account the direction of dependence and to consider only the direct connection rather than the indirect dependence between the words.
The significance of this study is as follows. First, we improved the performance of answer extraction by adding features using dependency parsing results, taking into account the characteristics of Korean, which is free of word order structure and omission of sentence components. Second, we generated feature of dependency parsing result by learning - based graph embedding method without defining the pattern of dependency between Eojeol. Future research directions are as follows. In this study, the features generated as a result of the dependency parsing are applied only to the answer extraction model in order to grasp the meaning. However, in the future, if the performance is confirmed by applying the features to various natural language processing models such as sentiment analysis or name entity recognition, the validity of the features can be verified more accurately.
Analysis of Research Trends of ‘Word of Mouth (WoM)’ through Main Path and Word Co-occurrence Network
Hyunbo Shin, and Hea-Jin Kim
Vol. 25, No. 3, Page: 179 ~ 200
Keywords : Citation Analysis, Keyword Co-occurrence Network, Main Path Analysis, Meta Analysis, Word-of-Mouth (WoM), Text Mining
Abstract
Word-of-mouth (WoM) is defined by consumer activities that share information concerning consumption. WoM activities have long been recognized as important in corporate marketing processes and have received much attention, especially in the marketing field. Recently, according to the development of the Internet, the way in which people exchange information in online news and online communities has been expanded, and WoM is diversified in terms of word of mouth, score, rating, and liking. Social media makes online users easy access to information and online WoM is considered a key source of information.
Although various studies on WoM have been preceded by this phenomenon, there is no meta-analysis study that comprehensively analyzes them. This study proposed a method to extract major researches by applying text mining techniques and to grasp the main issues of researches in order to find the trend of WoM research using scholarly big data. To this end, a total of 4389 documents were collected by the keyword 'Word-of-mouth' from 1941 to 2018 in Scopus (www.scopus.com), a citation database, and the data were refined through preprocessing such as English morphological analysis, stopwords removal, and noun extraction.
To carry out this study, we adopted main path analysis (MPA) and word co-occurrence network analysis. MPA detects key researches and is used to track the development trajectory of academic field, and presents the research trend from a macro perspective. For this, we constructed a citation network based on the collected data. The node means a document and the link means a citation relation in citation network. We then detected the key-route main path by applying SPC (Search Path Count) weights. As a result, the main path composed of 30 documents extracted from a citation network. The main path was able to confirm the change of the academic area which was developing along with the change of the times reflecting the industrial change such as various industrial groups. The results of MPA revealed that WoM research was distinguished by five periods: (1) establishment of aspects and critical elements of WoM, (2) relationship analysis between WoM variables, (3) beginning of researches of online WoM, (4) relationship analysis between WoM and purchase, and (5) broadening of topics. It was found that changes within the industry was reflected in the results such as online development and social media. Very recent studies showed that the topics and approaches related WoM were being diversified to circumstantial changes.
However, the results showed that even though WoM was used in diverse fields, the main stream of the researches of WoM from the start to the end, was related to marketing and figuring out the influential factors that proliferate WoM.
By applying word co-occurrence network analysis, the research trend is presented from a microscopic point of view. Word co-occurrence network was constructed to analyze the relationship between keywords and social network analysis (SNA) was utilized. We divided the data into three periods to investigate the periodic changes and trends in discussion of WoM. SNA showed that Period 1 (1941~2008) consisted of clusters regarding relationship, source, and consumers. Period 2 (2009~2013) contained clusters of satisfaction, community, social networks, review, and internet. Clusters of period 3 (2014~2018) involved satisfaction, medium, review, and interview. The periodic changes of clusters showed transition from offline to online WoM. Media of WoM have become an important factor in spreading the words.
This study conducted a quantitative meta-analysis based on scholarly big data regarding WoM. The main contribution of this study is that it provides a micro perspective on the research trend of WoM as well as the macro perspective. The limitation of this study is that the citation network constructed in this study is a network based on the direct citation relation of the collected documents for MPA.
A Study on the Effect of the Document Summar ization Technique on the Fake News Detection Model
Shim Jae-Seung, Ha-Ram Won, and Hyunchul Ahn
Vol. 25, No. 3, Page: 201 ~ 220
Keywords : Fake News Detection, Document Summarization, Automated Fact Checking, Machine Learning, Domestic News
Abstract
Fake news has emerged as a significant issue over the last few years, igniting discussions and research on how to solve this problem. In particular, studies on automated fact-checking and fake news detection using artificial intelligence and text analysis techniques have drawn attention. Fake news detection research entails a form of document classification; thus, document classification techniques have been widely used in this type of research.
However, document summarization techniques have been inconspicuous in this field. At the same time, automatic news summarization services have become popular, and a recent study found that the use of news summarized through abstractive summarization has strengthened the predictive performance of fake news detection models.
Therefore, the need to study the integration of document summarization technology in the domestic news data environment has become evident. In order to examine the effect of extractive summarization on the fake news detection model, we first summarized news articles through extractive summarization. Second, we created a summarized news-based detection model. Finally, we compared our model with the full-text-based detection model.
The study found that BPN(Back Propagation Neural Network) and SVM(Support Vector Machine) did not exhibit a large difference in performance; however, for DT(Decision Tree), the full-text-based model demonstrated a somewhat better performance. In the case of LR(Logistic Regression), our model exhibited the superior performance.
Nonetheless, the results did not show a statistically significant difference between our model and the full-text-based model. Therefore, when the summary is applied, at least the core information of the fake news is preserved, and the LR-based model can confirm the possibility of performance improvement. This study features an experimental application of extractive summarization in fake news detection research by employing various machine-learning algorithms. The study’s limitations are, essentially, the relatively small amount of data and the lack of comparison between various summarization technologies. Therefore, an in-depth analysis that applies various analytical techniques to a larger data volume would be helpful in the future.
1



Warning: include(/home/hosting_users/ev_jiisonline/www/admin/archive/advancedSearch.php) [function.include]: failed to open stream: No such file or directory in /home/hosting_users/ev_jiisonline/www/archive/subList.php on line 113

Warning: include() [function.include]: Failed opening '/home/hosting_users/ev_jiisonline/www/admin/archive/advancedSearch.php' for inclusion (include_path='.:/usr/local/php/lib/php') in /home/hosting_users/ev_jiisonline/www/archive/subList.php on line 113