DIGITAL LIBRARY ARCHIVE
HOME > DIGITAL LIBRARY ARCHIVE
Journal of Intelligence and Information Systems,
Vol. 26, No. 3, September 2020
A Study on the Acceptance Factors of the Capital Market Sentiment Index
Suk-Hwan Kim, and Hyoung-Goo Kang
Vol. 26, No. 3, Page: 1 ~ 36
10.13088/jiis.2020.26.3.001
Keywords : Capital Market, Stock Investment, Unstructured Big Data, Market Sentiment Index, Technology Acceptance Model, Structural Equation Model, Investment Decision Support System MSI, TAM, SEM.
Abstract
This study is to reveal the acceptance factors of the Market Sentiment Index (MSI) created by reflecting the investor sentiment extracted by processing unstructured big data. The research model was established by exploring exogenous variables based on the rational behavior theory and applying the Technology Acceptance Model (TAM). The acceptance of MSI provided to investors in the stock market was found to be influenced by the exogenous variables presented in this study.
The results of causal analysis are as follows. First, self-efficacy, investment opportunities, Innovativeness, and perceived cost significantly affect perceived ease of use. Second, Diversity of services and perceived benefits have a statistically significant impact on perceived usefulness. Third, Perceived ease of use and perceived usefulness have a statistically significant effect on attitude to use. Fourth, Attitude to use statistically significantly influences the intention to use, and the investment opportunities as an independent variable affects the intention to use. Fifth, the intention to use statistically significantly affects the final dependent variable, the intention to use continuously.
The mediating effect between the independent and dependent variables of the research model is as follows. First, The indirect effect on the causal route from diversity of services to continuous use intention was 0.1491, which was statistically significant at the significance level of 1%. Second, The indirect effect on the causal route from perceived benefit to continuous use intention was 0.1281, which was statistically significant at the significance level of 1%.
The results of the multi-group analysis are as follows. First, for groups with and without stock investment experience, multi-group analysis was not possible because the measurement uniformity between the two groups was not secured. Second, the analysis result of the difference in the effect of independent variables of male and female groups on the intention to use continuously, where measurement uniformity was secured between the two groups, In the causal route from usage attitude to usage intention, women are higher than men. And in the causal route from use intention to continuous use intention, males were very high and showed statistically significant difference at significance level 5%.
Game Theoretic Optimization of Investment Portfolio Considering the Performance of Information Security Countermeasure
Sang-Hoon Lee, and Tae-Sung Kim
Vol. 26, No. 3, Page: 37 ~ 50
10.13088/jiis.2020.26.3.037
Keywords : Game theory, Information security, Investment portfolio
Abstract
Information security has become an important issue in the world. Various information and communication technologies, such as the Internet of Things, big data, cloud, and artificial intelligence, are developing, and the need for information security is increasing. Although the necessity of information security is expanding according to the development of information and communication technology, interest in information security investment is insufficient. In general, measuring the effect of information security investment is difficult, so appropriate investment is not being practice, and organizations are decreasing their information security investment. In addition, since the types and specification of information security measures are diverse, it is difficult to compare and evaluate the information security countermeasures objectively, and there is a lack of decision-making methods about information security investment. To develop the organization, policies and decisions related to information security are essential, and measuring the effect of information security investment is necessary. Therefore, this study proposes a method of constructing an investment portfolio for information security measures using game theory and derives an optimal defence probability. Using the two-person game model, the information security manager and the attacker are assumed to be the game players, and the information security countermeasures and information security threats are assumed as the strategy of the players, respectively. A zero-sum game that the sum of the players’ payoffs is zero is assumed, and we derive a solution of a mixed strategy game in which a strategy is selected according to probability distribution among strategies. In the real world, there are various types of information security threats exist, so multiple information security measures should be considered to maintain the appropriate information security level of information systems. We assume that the defence ratio of the information security countermeasures is known, and we derive the optimal solution of the mixed strategy game using linear programming. The contributions of this study are as follows. First, we conduct analysis using real performance data of information security measures. Information security managers of organizations can use the methodology suggested in this study to make practical decisions when establishing investment portfolio for information security countermeasures. Second, the investment weight of information security countermeasures is derived. Since we derive the weight of each information security measure, not just whether or not information security measures have been invested, it is easy to construct an information security investment portfolio in a situation where investment decisions need to be made in consideration of a number of information security countermeasures. Finally, it is possible to find the optimal defence probability after constructing an investment portfolio of information security countermeasures. The information security managers of organizations can measure the specific investment effect by drawing out information security countermeasures that fit the organization's information security investment budget. Also, numerical examples are presented and computational results are analyzed. Based on the performance of various information security countermeasures: Firewall, IPS, and Antivirus, data related to information security measures are collected to construct a portfolio of information security countermeasures. The defence ratio of the information security countermeasures is created using a uniform distribution, and a coverage of performance is derived based on the report of each information security countermeasure. According to numerical examples that considered Firewall, IPS, and Antivirus as information security countermeasures, the investment weights of Firewall, IPS, and Antivirus are optimized to 60.74%, 39.26%, and 0%, respectively. The result shows that the defence probability of the organization is maximized to 83.87%. When the methodology and examples of this study are used in practice, information security managers can consider various types of information security measures, and the appropriate investment level of each measure can be reflected in the organization's budget.
Impact of Shortly Acquired IPO Firms on ICT Industry Concentration
YoungBong Chang, and YoungOk Kwon
Vol. 26, No. 3, Page: 51 ~ 69
10.13088/jiis.2020.26.3.051
Keywords : ICT firms/ industries, Mergers and acquisitions, IPO, Industry concentration
Abstract
Now, it is a stylized fact that a small number of technology firms such as Apple, Alphabet, Microsoft, Amazon, Facebook and a few others have become larger and dominant players in an industry.
Coupled with the rise of these leading firms, we have also observed that a large number of young firms have become an acquisition target in their early IPO stages. This indeed results in a sharp decline in the number of new entries in public exchanges although a series of policy reforms have been promulgated to foster competition through an increase in new entries. Given the observed industry trend in recent decades, a number of studies have reported increased concentration in most developed countries. However, it is less understood as to what caused an increase in industry concentration.
In this paper, we uncover the mechanisms by which industries have become concentrated over the last decades by tracing the changes in industry concentration associated with a firm’s status change in its early IPO stages. To this end, we put emphasis on the case in which firms are acquired shortly after they went public. Especially, with the transition to digital-based economies, it is imperative for incumbent firms to adapt and keep pace with new ICT and related intelligent systems. For instance, after the acquisition of a young firm equipped with AI-based solutions, an incumbent firm may better respond to a change in customer taste and preference by integrating acquired AI solutions and analytics skills into multiple business processes. Accordingly, it is not unusual for young ICT firms become an attractive acquisition target. To examine the role of M&As involved with young firms in reshaping the level of industry concentration, we identify a firm’s status in early post-IPO stages over the sample periods spanning from 1990 to 2016 as follows: i) being delisted, ii) being standalone firms and iii) being acquired.
According to our analysis, firms that have conducted IPO since 2000s have been acquired by incumbent firms at a relatively quicker time than those that did IPO in previous generations. We also show a greater acquisition rate for IPO firms in the ICT sector compared with their counterparts in other sectors.
Our results based on multinomial logit models suggest that a large number of IPO firms have been acquired in their early post-IPO lives despite their financial soundness. Specifically, we show that IPO firms are likely to be acquired rather than be delisted due to financial distress in early IPO stages when they are more profitable, more mature or less leveraged. For those IPO firms with venture capital backup have also become an acquisition target more frequently. As a larger number of firms are acquired shortly after their IPO, our results show increased concentration. While providing limited evidence on the impact of large incumbent firms in explaining the change in industry concentration, our results show that the large firms’ effect on industry concentration are pronounced in the ICT sector. This result possibly captures the current trend that a few tech giants such as Alphabet, Apple and Facebook continue to increase their market share.
In addition, compared with the acquisitions of non-ICT firms, the concentration impact of IPO firms in early stages becomes larger when ICT firms are acquired as a target.
Our study makes new contributions. To our best knowledge, this is one of a few studies that link a firm’s post-IPO status to associated changes in industry concentration. Although some studies have addressed concentration issues, their primary focus was on market power or proprietary software. Contrast to earlier studies, we are able to uncover the mechanism by which industries have become concentrated by placing emphasis on M&As involving young IPO firms. Interestingly, the concentration impact of IPO firm acquisitions are magnified when a large incumbent firms are involved as an acquirer. This leads us to infer the underlying reasons as to why industries have become more concentrated with a favor of large firms in recent decades. Overall, our study sheds new light on the literature by providing a plausible explanation as to why industries have become concentrated.
Artificial Intelligence Technology, InsurTech, Digital Insurance Platform, Ping An Insurance Group Ltd., ser-M Model
JaeWon Lee, and SangJin Oh
Vol. 26, No. 3, Page: 71 ~ 90
10.13088/jiis.2020.26.3.071
Keywords : Artificial Intelligence Technology, InsurTech, Digital Insurance Platform, Ping An Insurance Group Ltd., ser-M Model
Abstract
Recently, the global insurance industry is rapidly developing digital transformation through the use of artificial intelligence technologies such as machine learning, natural language processing, and deep learning. As a result, more and more foreign insurers have achieved the success of artificial intelligence technology-based InsurTech and platform business, and Ping An Insurance Group Ltd., China's largest private company, is leading China's global fourth industrial revolution with remarkable achievements in InsurTech and Digital Platform as a result of its constant innovation, using ‘finance and technology’ and ‘finance and ecosystem’ as keywords for companies.
In response, this study analyzed the InsurTech and platform business activities of Ping An Insurance Group Ltd. through the ser-M analysis model to provide strategic implications for revitalizing AI technology-based businesses of domestic insurers. The ser-M analysis model has been studied so that the vision and leadership of the CEO, the historical environment of the enterprise, the utilization of various resources, and the unique mechanism relationships can be interpreted in an integrated manner as a frame that can be interpreted in terms of the subject, environment, resource and mechanism. As a result of the case analysis, Ping An Insurance Group Ltd. has achieved cost reduction and customer service development by digitally innovating its entire business area such as sales, underwriting, claims, and loan service by utilizing core artificial intelligence technologies such as facial, voice, and facial expression recognition. In addition, "online data in China" and "the vast offline data and insights accumulated by the company" were combined with new technologies such as artificial intelligence and big data analysis to build a digital platform that integrates financial services and digital service businesses. Ping An Insurance Group Ltd. challenged constant innovation, and as of 2019, sales reached $155 billion, ranking seventh among all companies in the Global 2000 rankings selected by Forbes Magazine.
Analyzing the background of the success of Ping An Insurance Group Ltd. from the perspective of ser-M, founder Mammingz quickly captured the development of digital technology, market competition and changes in population structure in the era of the fourth industrial revolution, and established a new vision and displayed an agile leadership of digital technology-focused. Based on the strong leadership led by the founder in response to environmental changes, the company has successfully led InsurTech and Platform Business through innovation of internal resources such as investment in artificial intelligence technology, securing excellent professionals, and strengthening big data capabilities, combining external absorption capabilities, and strategic alliances among various industries.
Through this success story analysis of Ping An Insurance Group Ltd., the following implications can be given to domestic insurance companies that are preparing for digital transformation. First, CEOs of domestic companies also need to recognize the paradigm shift in industry due to the change in digital technology and quickly arm themselves with digital technology-oriented leadership to spearhead the digital transformation of enterprises. Second, the Korean government should urgently overhaul related laws and systems to further promote the use of data between different industries and provide drastic support such as deregulation, tax benefits and platform provision to help the domestic insurance industry secure global competitiveness. Third, Korean companies also need to make bolder investments in the development of artificial intelligence technology so that systematic securing of internal and external data, training of technical personnel, and patent applications can be expanded, and digital platforms should be quickly established so that diverse customer experiences can be integrated through learned artificial intelligence technology.
Finally, since there may be limitations to generalization through a single case of an overseas insurance company, I hope that in the future, more extensive research will be conducted on various management strategies related to artificial intelligence technology by analyzing cases of multiple industries or multiple companies or conducting empirical research.
Analysis of Football Fans' Uniform Consumption: Before and After Son Heung-Min's Transfer to Tottenham Hotspur FC
Yeong-Hyeon Choi, and Kyu-Hye Lee
Vol. 26, No. 3, Page: 91 ~ 108
10.13088/jiis.2020.26.3.091
Keywords : Football Uniform, English Premier League, Text Mining, Social Network Analysis
Abstract
Korea’s famous soccer players are steadily performing well in international leagues, which led to higher interests of Korean fans in the international leagues. Reflecting the growing social phenomenon of rising interests on international leagues by Korean fans, the study examined the overall consumer perception in the consumption of uniform by domestic soccer fans and compared the changes in perception following the transfers of the players. Among others, the paper examined the consumer perception and purchase factors of soccer fans shown in social media, focusing on periods before and after the recruitment of Heung-Min Son to English Premier League's Tottenham Football Club. To this end, the EPL uniform is the collection keyword the paper utilized and collected consumer postings from domestic website and social media via Python 3.7, and analyzed them using Ucinet 6, NodeXL 1.0.1, and SPSS 25.0 programs. The results of this study can be summarized as follows. First, the uniform of the club that consistently topped the league, has been gaining attention as a popular uniform, and the players' performance, and the players' position have been identified as key factors in the purchase and search of professional football uniforms.
In the case of the club, the actual ranking and whether the league won are shown to be important factors in the purchase and search of professional soccer uniforms. The club’s emblem and the sponsor logo that will be attached to the uniform are also factors of interest to consumers. In addition, in the decision making process of purchase of a uniform by professional soccer fan, uniform’s form, marking, authenticity, and sponsors are found to be more important than price, design, size, and logo. The official online store has emerged as a major purchasing channel, followed by gifts for friends or requests from acquaintances when someone travels to the United Kingdom. Second, a classification of key control categories through the convergence of iteration correlation analysis and Clauset-Newman-Moore clustering algorithm shows differences in the classification of individual groups, but groups that include the EPL's club and player keywords are identified as the key topics in relation to professional football uniforms. Third, between 2002 and 2006, the central theme for professional football uniforms was World Cup and English Premier League, but from 2012 to 2015, the focus has shifted to more interest of domestic and international players in the English Premier League. The subject has changed to the uniform itself from this time on. In this context, the paper can confirm that the major issues regarding the uniforms of professional soccer players have changed since Ji-Sung Park’s transfer to Manchester United, and Sung-Yong Ki, Chung-Yong Lee, and Heung-Min Son’s good performances in these leagues. The paper also identified that the uniforms of the clubs to which the players have transferred to are of interest. Fourth, both male and female consumers are showing increasing interest in Son's league, the English Premier League, which Tottenham FC belongs to. In particular, the increasing interest in Son has shown a tendency to increase interest in football uniforms for female consumers. This study presents a variety of researches on sports consumption and has value as a consumer study by identifying unique consumption patterns. It is meaningful in that the accuracy of the interpretation has been enhanced by using a cluster analysis via convergence of iteration correlation analysis and Clauset-Newman-Moore clustering algorithm to identify the main topics. Based on the results of this study, the clubs will be able to maximize its profits and maintain good relationships with fans by identifying key drivers of consumer awareness and purchasing for professional soccer fans and establishing an effective marketing strategy.
A Study on the Establishment of Comparison System between the Statement of Military Reports and Related Laws
Jiin Jung, Mintae Kim, and Wooju Kim
Vol. 26, No. 3, Page: 109 ~ 125
10.13088/jiis.2020.26.3.109
Keywords : Defence Acquisition Program, Sentence Similarity, Natural Language Processing, Siamese Network, Self-Attention
Abstract
The Ministry of National Defense is pushing for the Defense Acquisition Program to build strong defense capabilities, and it spends more than 10 trillion won annually on defense improvement. As the Defense Acquisition Program is directly related to the security of the nation as well as the lives and property of the people, it must be carried out very transparently and efficiently by experts. However, the excessive diversification of laws and regulations related to the Defense Acquisition Program has made it challenging for many working-level officials to carry out the Defense Acquisition Program smoothly. It is even known that many people realize that there are related regulations that they were unaware of until they push ahead with their work. In addition, the statutory statements related to the Defense Acquisition Program have the tendency to cause serious issues even if only a single expression is wrong within the sentence. Despite this, efforts to establish a sentence comparison system to correct this issue in real time have been minimal. Therefore, this paper tries to propose a “Comparison System between the Statement of Military Reports and Related Laws” implementation plan that uses the Siamese Network-based artificial neural network, a model in the field of natural language processing (NLP), to observe the similarity between sentences that are likely to appear in the Defense Acquisition Program related documents and those from related statutory provisions to determine and classify the risk of illegality and to make users aware of the consequences. Various artificial neural network models (Bi-LSTM, Self-Attention, D_Bi-LSTM) were studied using 3,442 pairs of “Original Sentence”(described in actual statutes) and “Edited Sentence”(edited sentences derived from “Original Sentence”). Among many Defense Acquisition Program related statutes, DEFENSE ACQUISITION PROGRAM ACT, ENFORCEMENT RULE OF THE DEFENSE ACQUISITION PROGRAM ACT, and ENFORCEMENT DECREE OF THE DEFENSE ACQUISITION PROGRAM ACT were selected. Furthermore, “Original Sentence” has the 83 provisions that actually appear in the Act. “Original Sentence” has the main 83 clauses most accessible to working-level officials in their work. “Edited Sentence” is comprised of 30 to 50 similar sentences that are likely to appear modified in the county report for each clause(“Original Sentence”). During the creation of the edited sentences, the original sentences were modified using 12 certain rules, and these sentences were produced in proportion to the number of such rules, as it was the case for the original sentences.
After conducting 1 : 1 sentence similarity performance evaluation experiments, it was possible to classify each “Edited Sentence” as legal or illegal with considerable accuracy. In addition, the “Edited Sentence” dataset used to train the neural network models contains a variety of actual statutory statements(“Original Sentence”), which are characterized by the 12 rules. On the other hand, the models are not able to effectively classify other sentences, which appear in actual military reports, when only the “Original Sentence” and “Edited Sentence” dataset have been fed to them. The dataset is not ample enough for the model to recognize other incoming new sentences. Hence, the performance of the model was reassessed by writing an additional 120 new sentences that have better resemblance to those in the actual military report and still have association with the original sentences. Thereafter, we were able to check that the models’ performances surpassed a certain level even when they were trained merely with “Original Sentence” and “Edited Sentence” data. If sufficient model learning is achieved through the improvement and expansion of the full set of learning data with the addition of the actual report appearance sentences, the models will be able to better classify other sentences coming from military reports as legal or illegal.
Based on the experimental results, this study confirms the possibility and value of building "Real-Time Automated Comparison System Between Military Documents and Related Laws". The research conducted in this experiment can verify which specific clause, of several that appear in related law clause is most similar to the sentence that appears in the Defense Acquisition Program-related military reports. This helps determine whether the contents in the military report sentences are at the risk of illegality when they are compared with those in the law clauses.
The Classification System and Information Service for Establishing a National Collaborative R&D Strategy in Infectious Diseases: Focusing on the Classification Model for Overseas Coronavirus R&D Projects
Doyeon Lee, Jae-Seong Lee, Seung-pyo Jun, and Keun-Hwan Kim
Vol. 26, No. 3, Page: 127 ~ 147
10.13088/jiis.2020.26.3.127
Keywords : National-Funded Project, Infectious diseases, Classification, Bidirectional RNN, Coronavirus, Collaboration
Abstract
The world is suffering from numerous human and economic losses due to the novel coronavirus infection (COVID-19). The Korean government established a strategy to overcome the national infectious disease crisis through research and development.
It is difficult to find distinctive features and changes in a specific R&D field when using the existing technical classification or science and technology standard classification. Recently, a few studies have been conducted to establish a classification system to provide information about the investment research areas of infectious diseases in Korea through a comparative analysis of Korea government-funded research projects. However, these studies did not provide the necessary information for establishing cooperative research strategies among countries in the infectious diseases, which is required as an execution plan to achieve the goals of national health security and fostering new growth industries. Therefore, it is inevitable to study information services based on the classification system and classification model for establishing a national collaborative R&D strategy.
Seven classification - Diagnosis_biomarker, Drug_discovery, Epidemiology, Evaluation_validation, Mechanism_signaling pathway, Prediction, and Vaccine_therapeutic antibody - systems were derived through reviewing infectious diseases-related national-funded research projects of South Korea. A classification system model was trained by combining Scopus data with a bidirectional RNN model. The classification performance of the final model secured robustness with an accuracy of over 90%. In order to conduct the empirical study, an infectious disease classification system was applied to the coronavirus-related research and development projects of major countries such as the STAR Metrics (National Institutes of Health) and NSF (National Science Foundation) of the United States(US), the CORDIS (Community Research & Development Information Service)of the European Union(EU), and the KAKEN (Database of Grants-in-Aid for Scientific Research) of Japan.
It can be seen that the research and development trends of infectious diseases (coronavirus) in major countries are mostly concentrated in the prediction that deals with predicting success for clinical trials at the new drug development stage or predicting toxicity that causes side effects. The intriguing result is that for all of these nations, the portion of national investment in the vaccine_therapeutic antibody, which is recognized as an area of research and development aimed at the development of vaccines and treatments, was also very small (5.1%). It indirectly explained the reason of the poor development of vaccines and treatments. Based on the result of examining the investment status of coronavirus-related research projects through comparative analysis by country, it was found that the US and Japan are relatively evenly investing in all infectious diseases-related research areas, while Europe has relatively large investments in specific research areas such as diagnosis_biomarker. Moreover, the information on major coronavirus-related research organizations in major countries was provided by the classification system, thereby allowing establishing an international collaborative R&D projects.
Suggestion of Urban Regeneration Type Recommendation System Based on Local Characteristics Using Text Mining
Ikjun Kim, Junho Lee, Hyomin Kim, and Juyoung Kang
Vol. 26, No. 3, Page: 149 ~ 169
10.13088/jiis.2020.26.3.149
Keywords : Urban Regeneration, Text Mining, Topic Modeling, Classification, Machine Learning
Abstract
"The Urban Renewal New Deal project”, one of the government's major national projects, is about developing underdeveloped areas by investing 50 trillion won in 100 locations on the first year and 500 over the next four years. This project is drawing keen attention from the media and local governments.
However, the project model which fails to reflect the original characteristics of the area as it divides project area into five categories: "Our Neighborhood Restoration, Housing Maintenance Support Type, General Neighborhood Type, Central Urban Type, and Economic Base Type," According to keywords for successful urban regeneration in Korea, "resident participation," "regional specialization," "ministerial cooperation" and "public-private cooperation”, when local governments propose urban regeneration projects to the government, they can see that it is most important to accurately understand the characteristics of the city and push ahead with the projects in a way that suits the characteristics of the city with the help of local residents and private companies. In addition, considering the gentrification problem, which is one of the side effects of urban regeneration projects, it is important to select and implement urban regeneration types suitable for the characteristics of the area.
In order to supplement the limitations of the 'Urban Regeneration New Deal Project' methodology, this study aims to propose a system that recommends urban regeneration types suitable for urban regeneration sites by utilizing various machine learning algorithms, referring to the urban regeneration types of the '2025 Seoul Metropolitan Government Urban Regeneration Strategy Plan' promoted based on regional characteristics. There are four types of urban regeneration in Seoul: "Low-use Low-Level Development, Abandonment, Deteriorated Housing, and Specialization of Historical and Cultural Resources" (Shon and Park, 2017).
In order to identify regional characteristics, approximately 100,000 text data were collected for 22 regions where the project was carried out for a total of four types of urban regeneration. Using the collected data, we drew key keywords for each region according to the type of urban regeneration and conducted topic modeling to explore whether there were differences between types. As a result, it was confirmed that a number of topics related to real estate and economy appeared in old residential areas, and in the case of declining and underdeveloped areas, topics reflecting the characteristics of areas where industrial activities were active in the past appeared. In the case of the historical and cultural resource area, since it is an area that contains traces of the past, many keywords related to the government appeared.
Therefore, it was possible to confirm political topics and cultural topics resulting from various events.
Finally, in the case of low-use and under-developed areas, many topics on real estate and accessibility are emerging, so accessibility is good. It mainly had the characteristics of a region where development is planned or is likely to be developed.
Furthermore, a model was implemented that proposes urban regeneration types tailored to regional characteristics for regions other than Seoul. Machine learning technology was used to implement the model, and training data and test data were randomly extracted at an 8:2 ratio and used. In order to compare the performance between various models, the input variables are set in two ways: Count Vector and TF-IDF Vector, and as Classifier, there are 5 types of SVM (Support Vector Machine), Decision Tree, Random Forest, Logistic Regression, and Gradient Boosting. By applying it, performance comparison for a total of 10 models was conducted. The model with the highest performance was the Gradient Boosting method using TF-IDF Vector input data, and the accuracy was 97%. Therefore, the recommendation system proposed in this study is expected to recommend urban regeneration types based on the regional characteristics of new business sites in the process of carrying out urban regeneration projects."
Derivation of Digital Music’s Ranking Change Through Time Series Clustering
In Jin Yoo, and Do-Hyung Park
Vol. 26, No. 3, Page: 171 ~ 191
10.13088/jiis.2020.26.3.171
Keywords : Music, Digital Music, Rank Change, Time Series Clustering
Abstract
This study focused on digital music, which is the most valuable cultural asset in the modern society and occupies a particularly important position in the flow of the Korean Wave. Digital music was collected based on the “Gaon Chart,” a well-established music chart in Korea. Through this, the changes in the ranking of the music that entered the chart for 73 weeks were collected. Afterwards, patterns with similar characteristics were derived through time series cluster analysis. Then, a descriptive analysis was performed on the notable features of each pattern. The research process suggested by this study is as follows. First, in the data collection process, time series data was collected to check the ranking change of digital music.
Subsequently, in the data processing stage, the collected data was matched with the rankings over time, and the music title and artist name were processed. Each analysis is then sequentially performed in two stages consisting of exploratory analysis and explanatory analysis. First, the data collection period was limited to the period before ‘the music bulk buying phenomenon', a reliability issue related to music ranking in Korea. Specifically, it is 73 weeks starting from December 31, 2017 to January 06, 2018 as the first week, and from May 19, 2019 to May 25, 2019. And the analysis targets were limited to digital music released in Korea. In particular, digital music was collected based on the “Gaon Chart”, a well-known music chart in Korea. Unlike private music charts that are being serviced in Korea, Gaon Charts are charts approved by government agencies and have basic reliability. Therefore, it can be considered that it has more public confidence than the ranking information provided by other services. The contents of the collected data are as follows. Data on the period and ranking, the name of the music, the name of the artist, the name of the album, the Gaon index, the production company, and the distribution company were collected for the music that entered the top 100 on the music chart within the collection period. Through data collection, 7,300 music, which were included in the top 100 on the music chart, were identified for a total of 73 weeks. On the other hand, in the case of digital music, since the cases included in the music chart for more than two weeks are frequent, the duplication of music is removed through the pre-processing process. For duplicate music, the number and location of the duplicated music were checked through the duplicate check function, and then deleted to form data for analysis. Through this, a list of 742 unique music for analysis among the 7,300-music data in advance was secured. A total of 742 songs were secured through previous data collection and pre-processing. In addition, a total of 16 patterns were derived through time series cluster analysis on the ranking change. Based on the patterns derived after that, two representative patterns were identified: ‘Steady Seller’ and ‘One-Hit Wonder’.
Furthermore, the two patterns were subdivided into five patterns in consideration of the survival period of the music and the music ranking. The important characteristics of each pattern are as follows. First, the artist's superstar effect and bandwagon effect were strong in the one-hit wonder-type pattern. Therefore, when consumers choose a digital music, they are strongly influenced by the superstar effect and the bandwagon effect. Second, through the Steady Seller pattern, we confirmed the music that have been chosen by consumers for a very long time. In addition, we checked the patterns of the most selected music through consumer needs. Contrary to popular belief, the steady seller: mid-term pattern, not the one-hit wonder pattern, received the most choices from consumers. Particularly noteworthy is that the ‘Climbing the Chart’ phenomenon, which is contrary to the existing pattern, was confirmed through the steady-seller pattern. This study focuses on the change in the ranking of music over time, a field that has been relatively alienated centering on digital music. In addition, a new approach to music research was attempted by subdividing the pattern of ranking change rather than predicting the success and ranking of music.
1


Advanced Search
Date Range

to
Search