DIGITAL LIBRARY ARCHIVE
HOME > DIGITAL LIBRARY ARCHIVE
Journal of Intelligence and Information Systems,
Vol. 28, No. 1, March 2022
The Role of Content Services Within a Firm’s Internet Service Portfolio: Case Studies of Naver Webtoon and Google YouTube
Jiwon Choi, Wooje Cho, Yoonhyuk Jung, and YoungOk Kwon
Vol. 28, No. 1, Page: 1 ~ 28
Keywords : content service, service portfolio, demand-side synergy, network effects, social network analysis
Abstract
In recent years, many Internet giants have begun providing their own content services, which attract online users by offering personalized services based on artificial intelligence technologies. This study investigates the role of two firms’ content services within the firms’ online service network. We examine the role of Naver Webtoon, which can be characterized as a professional-generated content, within Naver’s service portfolio, and that of Google YouTube, which can be characterized as a user-generated content, within Google’s service portfolio. Using survey data on viewers’ use of the two services, we analyze a valued directed service network, where a node denotes an online service and a relationship between two nodes denotes a sequential use of two services. We found that both Webtoon and YouTube show higher out-degree centrality than in-degree centrality, which implies these content services are more likely to be starting services rather than arriving services within the firms’ interactive network. The gap between the out-degree and in-degree centrality of YouTube is much smaller than that of Webtoon. The high centrality of YouTube, a user-generated content service, within the Google service network shows that YouTube’s initial role of providing specific-content videos (e.g., entertainment) has expanded into a general search service for users.
A Study on the Introductioin of Data Trusts System to Expand the Rights of Privacy Self-Determination
Keunjae Jang, and Seungyong Lee
Vol. 28, No. 1, Page: 29 ~ 43
Keywords : Privacy, The Rights to Privacy Self-Determination, Data Trusts, Trust System
Abstract
With the advent of the Internet and the development of mobile digital devices such as smartphones and tablet PCs, the communication service paradigm began to shift from existing voice services to data services. Recently, as social network services (SNS) are activated and 4th industrial revolution technologies centered on ICT (Information and Communication Technologies) such as Big Data, Blockchain, Cloud, and 5G/6G are rapidly developed, the amount of shared data type and the amount of data are increasing rapidly.
As the transition to a digital society begins actively, the importance of using data information, as well as the economic and social values of personal information are becoming increasingly important. As a result, they are actively discussing policies to revitalize the data information industry around the world and ways to efficiently obtain, analyze, and utilize increasingly diverse and vast data, as well as to protect/guarantee the rights of information subjects (providers) in various fields such as society, culture, economy, and politics..
In this paper, in order to improve the self-determination right of personal information on data produced by information subjects, and further expand the use of safe data and the data economy, a differentiated data trusts system was considered and suggested. In addition, the components and data trusts procedures necessary to efficiently operate the data trusts system in Korea were considered, and the non-profit data trusts system and the for-profit data trusts system were considered as a way to flexibly operate the data trusts system. Furthermore, the legal items necessary for the implementation of the data trusts system were investigated and considered.
In this paper, in order to propose a domestic data trusts system, cases related to existing data trusts systems such as the United States, Japan, and Korea were reviewed and analyzed. In addition, in order to prepare legislation necessary for the data trusts system, data-related laws in major countries and domestic legal and policy trends were reviewed to study the rights that conflict or overlap with existing laws, and differences were investigated and considered.
The Data trusts system proposed in this paper is a reasonable system that is expected to recognize the asset value of data in the capitalist market economy system, to provide legitimate compensation for data produced by data subjects, and further to contribute greatly to the use of safe data and creation of a new service market.
Information types and characteristics within the Wireless Emergency Alert in COVID-19: Focusing on Wireless Emergency Alerts in Seoul
Sungwook Yoon, and Kihwan Nam
Vol. 28, No. 1, Page: 45 ~ 68
Keywords : Wireless Emergency Alert, Cell Broadcasting Service (CBS), Text Mining, Population Mobility
Abstract
The central and local governments of the Republic of Korea provided information necessary for disaster response through wireless emergency alerts (WEAs) in order to overcome the pandemic situation in which COVID-19 rapidly spreads. Among all channels for delivering disaster information, wireless emergency alert is the most efficient, and since it adopts the CBS(Cell Broadcast Service) method that broadcasts directly to the mobile phone, it has the advantage of being able to easily access disaster information through the mobile phone without the effort of searching. In this study, the characteristics of wireless emergency alerts sent to Seoul during the past year and one month (January 2020 to January 2021) were derived through various text mining methodologies, and various types of information contained in wireless emergency alerts were analyzed. In addition, it was confirmed through the population mobility by age in the districts of Seoul that what kind of influence it had on the movement behavior of people. After going through the process of classifying key words and information included in each character, text analysis was performed so that individual sent characters can be used as an analysis unit by applying a document cluster analysis technique based on the included words. The number of WEAs sent to the Seoul has grown dramatically since the spread of Covid-19. In January 2020, only 10 WEAs were sent to the Seoul, but the number of the WEAs increased 5 times in March, and 7.7 times over the previous months. Since the basic, regional local government were authorized to send wireless emergency alerts independently, the sending behavior of related to wireless emergency alerts are different for each local government. Although most of the basic local governments increased the transmission of WEAs as the number of confirmed cases of Covid-19 increases, the trend of the increase in WEAs according to the increase in the number of confirmed cases of Covid-19 was different by region. By using structured econometric model, the effect of disaster information included in wireless emergency alerts on population mobility was measured by dividing it into baseline effect and accumulating effect. Six types of disaster information, including date, order, online URL, symptom, location, normative guidance, were identified in WEAs and analyzed through econometric modelling. It was confirmed that the types of information that significantly change population mobility by age are different. Population mobility of people in their 60s and 70s decreased when wireless emergency alerts included information related to date and order. As date and order information is appeared in WEAs when they intend to give information about Covid-19 confirmed cases, these results show that the population mobility of higher ages decreased as they reacted to the messages reporting of confirmed cases of Covid-19. Online information (URL) decreased the population mobility of in their 20s, and information related to symptoms reduced the population mobility of people in their 30s. On the other hand, it was confirmed that normative words that including the meaning of encouraging compliance with quarantine policies did not cause significant changes in the population mobility of all ages. This means that only meaningful information which is useful for disaster response should be included in the wireless emergency alerts. Repeated sending of wireless emergency alerts reduces the magnitude of the impact of disaster information on population mobility. It proves indirectly that under the prolonged pandemic, people started to feel tired of getting repetitive WEAs with similar content and started to react less. In order to effectively use WEAs for quarantine and overcoming disaster situations, it is necessary to reduce the fatigue of the people who receive WEA by sending them only in necessary situations, and to raise awareness of WEAs.

Export Prediction Using Separated Learning Method and Recommendation of Potential Export Countries
Yeongjin Jang, Jongkwan Won, and Chaerok Lee
Vol. 28, No. 1, Page: 69 ~ 88
Keywords : Exports prediction, Machine learning, Separated learning, LightGBM, SHapley value
Abstract
One of the characteristics of South Korea’s economic structure is that it is highly dependent on exports. Thus, many businesses are closely related to the global economy and diplomatic situation. In addition, small and medium-sized enterprises(SMEs) specialized in exporting are struggling due to the spread of COVID-19. Therefore, this study aimed to develop a model to forecast exports for next year to support SMEs' export strategy and decision making. Also, this study proposed a strategy to recommend promising export countries of each item based on the forecasting model.
We analyzed important variables used in previous studies such as country-specific, item-specific, and macro-economic variables and collected those variables to train our prediction model. Next, through the exploratory data analysis(EDA) it was found that exports, which is a target variable, have a highly skewed distribution. To deal with this issue and improve predictive performance, we suggest a separated learning method. In a separated learning method, the whole dataset is divided into homogeneous subgroups and a prediction algorithm is applied to each group. Thus, characteristics of each group can be more precisely trained using different input variables and algorithms. In this study, we divided the dataset into five subgroups based on the exports to decrease skewness of the target variable. After the separation, we found that each group has different characteristics in countries and goods. For example, In Group 1, most of the exporting countries are developing countries and the majority of exporting goods are low value products such as glass and prints. On the other hand, major exporting countries of South Korea such as China, USA, and Vietnam are included in Group 4 and Group 5 and most exporting goods in these groups are high value products.
Then we used LightGBM(LGBM) and Exponential Moving Average(EMA) for prediction. Considering the characteristics of each group, models were built using LGBM for Group 1 to 4 and EMA for Group 5. To evaluate the performance of the model, we compare different model structures and algorithms. As a result, it was found that the separated learning model had best performance compared to other models. After the model was built, we also provided variable importance of each group using SHAP-value to add explainability of our model.
Based on the prediction model, we proposed a second-stage recommendation strategy for potential export countries. In the first phase, BCG matrix was used to find Star and Question Mark markets that are expected to grow rapidly. In the second phase, we calculated scores for each country and recommendations were made according to ranking. Using this recommendation framework, potential export countries were selected and information about those countries for each item was presented.
There are several implications of this study. First of all, most of the preceding studies have conducted research on the specific situation or country. However, this study use various variables and develops a machine learning model for a wide range of countries and items. Second, as to our knowledge, it is the first attempt to adopt a separated learning method for exports prediction. By separating the dataset into 5 homogeneous subgroups, we could enhance the predictive performance of the model. Also, more detailed explanation of models by group is provided using SHAP values.
Lastly, this study has several practical implications. There are some platforms which serve trade information including KOTRA, but most of them are based on past data. Therefore, it is not easy for companies to predict future trends. By utilizing the model and recommendation strategy in this research, trade related services in each platform can be improved so that companies including SMEs can fully utilize the service when making strategies and decisions for exports.
Video Analysis System for Action and Emotion Detection by Object with Hierarchical Clustering based Re-ID
Sang-Hyun Lee, Seong-Hun Yang, Seung-Jin Oh, and Jinbeom Kang
Vol. 28, No. 1, Page: 89 ~ 106
Keywords : Object Detection, Re-identification, Action Detection, Emotion Detection, Video Analysis
Abstract
Recently, the amount of video data collected from smartphones, CCTVs, black boxes, and high-definition cameras has increased rapidly. According to the increasing video data, the requirements for analysis and utilization are increasing. Due to the lack of skilled manpower to analyze videos in many industries, machine learning and artificial intelligence are actively used to assist manpower. In this situation, the demand for various computer vision technologies such as object detection and tracking, action detection, emotion detection, and Re-ID also increased rapidly. However, the object detection and tracking technology has many difficulties that degrade performance, such as re-appearance after the object’s departure from the video recording location, and occlusion. Accordingly, action and emotion detection models based on object detection and tracking models also have difficulties in extracting data for each object. In addition, deep learning architectures consist of various models suffer from performance degradation due to bottlenects and lack of optimization.
In this study, we propose an video analysis system consists of YOLOv5 based DeepSORT object tracking model, SlowFast based action recognition model, Torchreid based Re-ID model, and AWS Rekognition which is emotion recognition service. Proposed model uses single-linkage hierarchical clustering based Re-ID and some processing method which maximize hardware throughput. It has higher accuracy than the performance of the re-identification model using simple metrics, near real-time processing performance, and prevents tracking failure due to object departure and re-emergence, occlusion, etc. By continuously linking the action and facial emotion detection results of each object to the same object, it is possible to efficiently analyze videos.
The re-identification model extracts a feature vector from the bounding box of object image detected by the object tracking model for each frame, and applies the single-linkage hierarchical clustering from the past frame using the extracted feature vectors to identify the same object that failed to track. Through the above process, it is possible to re-track the same object that has failed to tracking in the case of re-appearance or occlusion after leaving the video location. As a result, action and facial emotion detection results of the newly recognized object due to the tracking fails can be linked to those of the object that appeared in the past. On the other hand, as a way to improve processing performance, we introduce Bounding Box Queue by Object and Feature Queue method that can reduce RAM memory requirements while maximizing GPU memory throughput. Also we introduce the IoF(Intersection over Face) algorithm that allows facial emotion recognized through AWS Rekognition to be linked with object tracking information.
The academic significance of this study is that the two-stage re-identification model can have real-time performance even in a high-cost environment that performs action and facial emotion detection according to processing techniques without reducing the accuracy by using simple metrics to achieve real-time performance. The practical implication of this study is that in various industrial fields that require action and facial emotion detection but have many difficulties due to the fails in object tracking can analyze videos effectively through proposed model. Proposed model which has high accuracy of retrace and processing performance can be used in various fields such as intelligent monitoring, observation services and behavioral or psychological analysis services where the integration of tracking information and extracted metadata creates greate industrial and business value.
In the future, in order to measure the object tracking performance more precisely, there is a need to conduct an experiment using the MOT Challenge dataset, which is data used by many international conferences. We will investigate the problem that the IoF algorithm cannot solve to develop an additional complementary algorithm. In addition, we plan to conduct additional research to apply this model to various fields’ dataset related to intelligent video analysis.
Structural features and Diffusion Patterns of Gartner Hype Cycle for Artificial Intelligence using Social Network analysis
Sunah Shin, and Juyoung Kang
Vol. 28, No. 1, Page: 107 ~ 129
Keywords : Gartner Hype Cycle, Social Network Analysis, Innovation Diffusion, Twitter, Artificial Intellingece
Abstract
It is important to preempt new technology because the technology competition is getting much tougher. Stakeholders conduct exploration activities continuously for new technology preoccupancy at the right time. Gartner's Hype Cycle has significant implications for stakeholders. The Hype Cycle is a expectation graph for new technologies which is combining the technology life cycle (S-curve) with the Hype Level. Stakeholders such as R&D investor, CTO(Chef of Technology Officer) and technical personnel are very interested in Gartner's Hype Cycle for new technologies. Because high expectation for new technologies can bring opportunities to maintain investment by securing the legitimacy of R&D investment. However, contrary to the high interest of the industry, the preceding researches faced with limitations aspect of empirical method and source data(news, academic papers, search traffic, patent etc.).
In this study, we focused on two research questions. The first research question was 'Is there a difference in the characteristics of the network structure at each stage of the hype cycle?'. To confirm the first research question, the structural characteristics of each stage were confirmed through the component cohesion size. The second research question is ‘Is there a pattern of diffusion at each stage of the hype cycle?’. This research question was to be solved through centralization index and network density. The centralization index is a concept of variance, and a higher centralization index means that a small number of nodes are centered in the network. Concentration of a small number of nodes means a star network structure. In the network structure, the star network structure is a centralized structure and shows better diffusion performance than a decentralized network (circle structure). Because the nodes which are the center of information transfer can judge useful information and deliver it to other nodes the fastest. So we confirmed the out-degree centralization index and in-degree centralization index for each stage.
For this purpose, we confirmed the structural features of the community and the expectation diffusion patterns using Social Network Serice(SNS) data in 'Gartner Hype Cycle for Artificial Intelligence, 2021'. Twitter data for 30 technologies (excluding four technologies) listed in 'Gartner Hype Cycle for Artificial Intelligence, 2021' were analyzed. Analysis was performed using R program (4.1.1 ver) and Cyram Netminer. From October 31, 2021 to November 9, 2021, 6,766 tweets were searched through the Twitter API, and converting the relationship user's tweet(Source) and user's retweets (Target). As a result, 4,124 edgelists were analyzed.
As a reult of the study, we confirmed the structural features and diffusion patterns through analyze the component cohesion size and degree centralization and density. Through this study, we confirmed that the groups of each stage increased number of components as time passed and the density decreased. Also 'Innovation Trigger' which is a group interested in new technologies as a early adopter in the innovation diffusion theory had high out-degree centralization index and the others had higher in-degree centralization index than out-degree. It can be inferred that 'Innovation Trigger' group has the biggest influence, and the diffusion will gradually slow down from the subsequent groups.
In this study, network analysis was conducted using social network service data unlike methods of the precedent researches. This is significant in that it provided an idea to expand the method of analysis when analyzing Gartner's hype cycle in the future. In addition, the fact that the innovation diffusion theory was applied to the Gartner's hype cycle's stage in artificial intelligence can be evaluated positively because the Gartner hype cycle has been repeatedly discussed as a theoretical weakness. Also it is expected that this study will provide a new perspective on decision-making on technology investment to stakeholdes.

Semantic Visualization of Dynamic Topic Modeling
Jinwook Yeon, Hyunkyung Boo, and Namgyu Kim
Vol. 28, No. 1, Page: 131 ~ 154
Keywords : Dynamic Topic Modeling, Word Embedding, Big Data, Visualization, Word2vec
Abstract
Recently, researches on unstructured data analysis have been actively conducted with the development of information and communication technology. In particular, topic modeling is a representative technique for discovering core topics from massive text data. In the early stages of topic modeling, most studies focused only on topic discovery. As the topic modeling field matured, studies on the change of the topic according to the change of time began to be carried out. Accordingly, interest in dynamic topic modeling that handle changes in keywords constituting the topic is also increasing. Dynamic topic modeling identifies major topics from the data of the initial period and manages the change and flow of topics in a way that utilizes topic information of the previous period to derive further topics in subsequent periods. However, it is very difficult to understand and interpret the results of dynamic topic modeling. The results of traditional dynamic topic modeling simply reveal changes in keywords and their rankings. However, this information is insufficient to represent how the meaning of the topic has changed.
Therefore, in this study, we propose a method to visualize topics by period by reflecting the meaning of keywords in each topic. In addition, we propose a method that can intuitively interpret changes in topics and relationships between or among topics. The detailed method of visualizing topics by period is as follows. In the first step, dynamic topic modeling is implemented to derive the top keywords of each period and their weight from text data. In the second step, we derive vectors of top keywords of each topic from the pre-trained word embedding model. Then, we perform dimension reduction for the extracted vectors. Then, we formulate a semantic vector of each topic by calculating weight sum of keywords in each vector using topic weight of each keyword. In the third step, we visualize the semantic vector of each topic using matplotlib, and analyze the relationship between or among the topics based on the visualized result. The change of topic can be interpreted in the following manners. From the result of dynamic topic modeling, we identify rising top 5 keywords and descending top 5 keywords for each period to show the change of the topic. Existing many topic visualization studies usually visualize keywords of each topic, but our approach proposed in this study differs from previous studies in that it attempts to visualize each topic itself.
To evaluate the practical applicability of the proposed methodology, we performed an experiment on 1,847 abstracts of artificial intelligence-related papers. The experiment was performed by dividing abstracts of artificial intelligence-related papers into three periods (2016-2017, 2018-2019, 2020-2021). We selected seven topics based on the consistency score, and utilized the pre-trained word embedding model of Word2vec trained with ‘Wikipedia’, an Internet encyclopedia. Based on the proposed methodology, we generated a semantic vector for each topic. Through this, by reflecting the meaning of keywords, we visualized and interpreted the themes by period. Through these experiments, we confirmed that the rising and descending of the topic weight of a keyword can be usefully used to interpret the semantic change of the corresponding topic and to grasp the relationship among topics.
In this study, to overcome the limitations of dynamic topic modeling results, we used word embedding and dimension reduction techniques to visualize topics by era. The results of this study are meaningful in that they broadened the scope of topic understanding through the visualization of dynamic topic modeling results. In addition, the academic contribution can be acknowledged in that it laid the foundation for follow-up studies using various word embeddings and dimensionality reduction techniques to improve the performance of the proposed methodology.
A study on the classification of research topics based on COVID-19 academic research using Topic modeling
So-yeon Yoo, and Gyoo-gun Lim
Vol. 28, No. 1, Page: 155 ~ 174
Keywords : COVID-19, Topic Modeling, LDA(Latent Dirichlet Allocation), Word2vec, Keyword Extraction
Abstract
From January 2020 to October 2021, more than 500,000 academic studies related to COVID-19 (Coronavirus-2, a fatal respiratory syndrome) have been published. The rapid increase in the number of papers related to COVID-19 is putting time and technical constraints on healthcare professionals and policy makers to quickly find important research. Therefore, in this study, we propose a method of extracting useful information from text data of extensive literature using LDA and Word2vec algorithm. Papers related to keywords to be searched were extracted from papers related to COVID-19, and detailed topics were identified. The data used the CORD-19 data set on Kaggle, a free academic resource prepared by major research groups and the White House to respond to the COVID-19 pandemic, updated weekly. The research methods are divided into two main categories. First, 41,062 articles were collected through data filtering and pre-processing of the abstracts of 47,110 academic papers including full text. For this purpose, the number of publications related to COVID-19 by year was analyzed through exploratory data analysis using a Python program, and the top 10 journals under active research were identified. LDA and Word2vec algorithm were used to derive research topics related to COVID-19, and after analyzing related words, similarity was measured. Second, papers containing 'vaccine' and 'treatment' were extracted from among the topics derived from all papers, and a total of 4,555 papers related to 'vaccine' and 5,971 papers related to 'treatment' were extracted. did For each collected paper, detailed topics were analyzed using LDA and Word2vec algorithms, and a clustering method through PCA dimension reduction was applied to visualize groups of papers with similar themes using the t-SNE algorithm. A noteworthy point from the results of this study is that the topics that were not derived from the topics derived for all papers being researched in relation to COVID-19 () were the topic modeling results for each research topic (
) was found to be derived from For example, as a result of topic modeling for papers related to ‘vaccine’, a new topic titled Topic 05 ‘neutralizing antibodies’ was extracted. A neutralizing antibody is an antibody that protects cells from infection when a virus enters the body, and is said to play an important role in the production of therapeutic agents and vaccine development. In addition, as a result of extracting topics from papers related to ‘treatment’, a new topic called Topic 05 ‘cytokine’ was discovered. A cytokine storm is when the immune cells of our body do not defend against attacks, but attack normal cells. Hidden topics that could not be found for the entire thesis were classified according to keywords, and topic modeling was performed to find detailed topics. In this study, we proposed a method of extracting topics from a large amount of literature using the LDA algorithm and extracting similar words using the Skip-gram method that predicts the similar words as the central word among the Word2vec models. The combination of the LDA model and the Word2vec model tried to show better performance by identifying the relationship between the document and the LDA subject and the relationship between the Word2vec document. In addition, as a clustering method through PCA dimension reduction, a method for intuitively classifying documents by using the t-SNE technique to classify documents with similar themes and forming groups into a structured organization of documents was presented. In a situation where the efforts of many researchers to overcome COVID-19 cannot keep up with the rapid publication of academic papers related to COVID-19, it will reduce the precious time and effort of healthcare professionals and policy makers, and rapidly gain new insights. We hope to help you get It is also expected to be used as basic data for researchers to explore new research directions.
Analysis of promising countries for export using parametric and non-parametric methods based on ERGM: Focusing on the case of information communication and home appliance industries
Seung-pyo Jun, Jinny Seo, and Jae-Young Yoo
Vol. 28, No. 1, Page: 175 ~ 196
Keywords : Global value chain; export competitiveness; export promising countries; Exponential Random Graph Model; Abnormality detection
Abstract
Information and communication and home appliance industries, which were one of South Korea's main industries, are gradually losing their export share as their export competitiveness is weakening. This study objectively analyzed export competitiveness and suggested export-promising countries in order to help South Korea's information communication and home appliance industries improve exports. In this study, network properties, centrality, and structural hole analysis were performed during network analysis to evaluate export competitiveness. In order to select promising export countries, we proposed a new variable that can take into account the characteristics of an already established International Trade Network (ITN), that is, the Global Value Chain (GVC), in addition to the existing economic factors. The conditional log-odds for individual links derived from the Exponential Random Graph Model (ERGM) in the analysis of the cross-border trade network were assumed as a proxy variable that can indicate the export potential. In consideration of the possibility of ERGM linkage, a parametric approach and a non-parametric approach were used to recommend export-promising countries, respectively. In the parametric method, a regression analysis model was developed to predict the export value of the information and communication and home appliance industries in South Korea by additionally considering the link-specific characteristics of the network derived from the ERGM to the existing economic factors. Also, in the non-parametric approach, an abnormality detection algorithm based on the clustering method was used, and a promising export country was proposed as a method of finding outliers that deviate from two peers.
According to the research results, the structural characteristic of the export network of the industry was a network with high transferability. Also, according to the centrality analysis result, South Korea's influence on exports was weak compared to its size, and the structural hole analysis result showed that export efficiency was weak. According to the model for recommending promising exporting countries proposed by this study, in parametric analysis, Iran, Ireland, North Macedonia, Angola, and Pakistan were promising exporting countries, and in nonparametric analysis, Qatar, Luxembourg, Ireland, North Macedonia and Pakistan were analyzed as promising exporting countries. There were differences in some countries in the two models. The results of this study revealed that the export competitiveness of South Korea's information and communication and home appliance industries in GVC was not high compared to the size of exports, and thus showed that exports could be further reduced. In addition, this study is meaningful in that it proposed a method to find promising export countries by considering GVC networks with other countries as a way to increase export competitiveness.
This study showed that, from a policy point of view, the international trade network of the information communication and home appliance industries has an important mutual relationship, and although transferability is high, it may not be easily expanded to a three-party relationship. In addition, it was confirmed that South Korea's export competitiveness or status was lower than the export size ranking. This paper suggested that in order to improve the low out-degree centrality, it is necessary to increase exports to Italy or Poland, which had significantly higher in-degrees. In addition, we argued that in order to improve the centrality of out-closeness, it is necessary to increase exports to countries with particularly high in-closeness. In particular, it was analyzed that Morocco, UAE, Argentina, Russia, and Canada should pay attention as export countries. This study also provided practical implications for companies expecting to expand exports. The results of this study argue that companies expecting export expansion need to pay attention to countries with a relatively high potential for export expansion compared to the existing export volume by country. In particular, for companies that export daily necessities, countries that should pay attention to the population are presented, and for companies that export high-end or durable products, countries with high GDP, or purchasing power, relatively low exports are presented. Since the process and results of this study can be easily extended and applied to other industries, it is also expected to develop services that utilize the results of this study in the public sector.
A study on the detection of fake news – The Comparison of detection performance according to the use of social engagement networks
Iitae Jeong, and Hyunchul Ahn
Vol. 28, No. 1, Page: 197 ~ 216
Keywords : Fake news detection, Graph embedding, Social engagement network, Graph2vec, COVID-19
Abstract
With the development of Internet and mobile technology and the spread of social media, a large amount of information is being generated and distributed online. Some of them are useful information for the public, but others are misleading information. The misleading information, so-called ‘fake news’, has been causing great harm to our society in recent years. Since the global spread of COVID-19 in 2020, much of fake news has been distributed online. Unlike other fake news, fake news related to COVID-19 can threaten people's health and even their lives. Therefore, intelligent technology that automatically detects and prevents fake news related to COVID-19 is a meaningful research topic to improve social health. Fake news related to COVID-19 has spread rapidly through social media, however, there have been few studies in Korea that proposed intelligent fake news detection using the information about how the fake news spreads through social media. Under this background, we propose a novel model that uses Graph2vec, one of the graph embedding methods, to effectively detect fake news related to COVID-19. The mainstream approaches of fake news detection have focused on news content, i.e., characteristics of the text, but the proposed model in this study can exploit information transmission relationships in social engagement networks when detecting fake news related to COVID-19. Experiments using a real-world data set have shown that our proposed model outperforms traditional models from the perspectives of prediction accuracy.Fake news detection, Graph embedding, Social engagement network, Graph2vec, COVID-19
1


Advanced Search
Date Range

to
Search